메뉴 건너뛰기




Volumn 48, Issue 8, 2002, Pages 2377-2383

Information-theoretic inequalities for contoured probability distributions

Author keywords

Brunn Minkowski; Convex bodies; Elliptically contoured; Entropy; Fisher information; Inequalities; Isoperimetric inequalities

Indexed keywords

BRUNN-MINKOWSKI; CONTOURED PROBABILITY DISTRIBUTIONS; CONVEX BODIES; ELLIPTICALLY CONTOURED; FISHER INFORMATION; INFORMATION-THEORETIC INEQUALITIES; ISOPERIMETRIC INEQUALITIES;

EID: 0036671994     PISSN: 00189448     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIT.2002.800496     Document Type: Letter
Times cited : (30)

References (20)
  • 6
    • 0001126703 scopus 로고
    • Best constants in young's inequality, its converse, and its generalization to more than three functions
    • (1976) Adv. Math. , vol.20 , Issue.2 , pp. 151-173
    • Brascamp, H.J.1    Lieb, E.H.2
  • 11
    • 12944295719 scopus 로고
    • Some inequalities satisfied by the quantities of information of Fisher and Shannon
    • (1959) Inform. Contr. , vol.2 , pp. 101-112
    • Stam, A.J.1
  • 12
    • 25744440940 scopus 로고
    • Information inequalities and uncertainty principles
    • Dep. Statist., Stanford Univ., Stanford, CA, Tech. Rep. 75
    • (1991)
    • Dembo, A.1
  • 18
    • 0033249421 scopus 로고    scopus 로고
    • Geometric asymptotics and the logarithmic Sobolev inequality
    • (1999) Forum Math. , vol.11 , pp. 105-137
    • Beckner, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.