-
1
-
-
0000770555
-
The algorithmic theory of polycyclic-by-finite groups
-
Baumslag, G., Cannonito, F. B., Robinson, D. J. S., Segal, D. (1991). The algorithmic theory of polycyclic-by-finite groups. J. Algebr., 142, 118-149.
-
(1991)
J. Algebr
, vol.142
, pp. 118-149
-
-
Baumslag, G.1
Cannonito, F.B.2
Robinson, D.J.S.3
Segal, D.4
-
2
-
-
0002807467
-
Some remarks on the computation of complements and normalizers in finite soluble groups
-
Celler, F., Neubüser, J., Wright, C. R. B. (1990). Some remarks on the computation of complements and normalizers in finite soluble groups. Acta Applic. Math., 21, 57-76.
-
(1990)
Acta Applic. Math
, vol.21
, pp. 57-76
-
-
Celler, F.1
Neubüser, J.2
Wright, C.R.B.3
-
4
-
-
0031237157
-
Kant V4
-
Daberkow, M., Fieker, C., Klüners, J., Pohst, M., Roegner, K., Wildanger, K. (1997). Kant V4. J. Symb. Comput., 24, 267-283.
-
(1997)
J. Symb. Comput
, vol.24
, pp. 267-283
-
-
Daberkow, M.1
Fieker, C.2
Klüners, J.3
Pohst, M.4
Roegner, K.5
Wildanger, K.6
-
5
-
-
0000694664
-
The orbit-stabilizer problem for linear groups
-
Dixon, J. D. (1985). The orbit-stabilizer problem for linear groups. Can. J. Math., 37, 238-259.
-
(1985)
Can. J. Math
, vol.37
, pp. 238-259
-
-
Dixon, J.D.1
-
6
-
-
0004290387
-
Algorithms for polycyclic groups
-
Habilitationsschrift, Universität Kassel
-
Eick, B. (2001a). Algorithms for polycyclic groups. Habilitationsschrift, Universität Kassel.
-
(2001)
-
-
Eick, B.1
-
7
-
-
0001852074
-
Computing with infinite polycyclic groups
-
Seress, A., Kantor., W. M. eds., DIMACS, 1999
-
Eick, B. (2001b). Computing with infinite polycyclic groups. In Seress, A., Kantor., W. M. eds., Groups and Computation III, DIMACS, 1999, pp. 139-153.
-
(2001)
Groups and Computation III
, pp. 139-153
-
-
Eick, B.1
-
8
-
-
0003513687
-
-
A GAP 4 package, see Gap (2000)
-
Eick, B., Nickel, W. (2000). Polycyclic. A GAP 4 package, see Gap (2000).
-
(2000)
Polycyclic
-
-
Eick, B.1
Nickel, W.2
-
9
-
-
85031442971
-
On the orbit stabilizer problem for integral matrix actions of polycyclic groups
-
to appear
-
Eick, B., Ostheimer, G. (2002). On the orbit stabilizer problem for integral matrix actions of polycyclic groups. Math. Comput., to appear.
-
(2002)
Math. Comput
-
-
Eick, B.1
Ostheimer, G.2
-
10
-
-
84992056049
-
Computing intersections and normalizers in soluble groups
-
Glasby, S.P., Slattery, M. C. (1990). Computing intersections and normalizers in soluble groups. J. Symb. Comput., 9, 637-651.
-
(1990)
J. Symb. Comput
, vol.9
, pp. 637-651
-
-
Glasby, S.P.1
Slattery, M.C.2
-
11
-
-
0031616633
-
Finding intersection and normalizer in finitely generated nilpotent groups
-
Lo, E. H. (1998). Finding intersection and normalizer in finitely generated nilpotent groups. J. Symb. Comput., 25, 45-59.
-
(1998)
J. Symb. Comput
, vol.25
, pp. 45-59
-
-
Lo, E.H.1
-
12
-
-
0031616707
-
A polycyclic quotient algorithm
-
Lo, E. H. (1998). A polycyclic quotient algorithm. J. Symb. Comput., 25, 61-97.
-
(1998)
J. Symb. Comput
, vol.25
, pp. 61-97
-
-
Lo, E.H.1
-
13
-
-
0000500388
-
Practical algorithms for polycyclic matrix groups
-
Ostheimer, G. (1999). Practical algorithms for polycyclic matrix groups. J. Symb. Comput., 28, 361-379.
-
(1999)
J. Symb. Comput
, vol.28
, pp. 361-379
-
-
Ostheimer, G.1
-
15
-
-
84968511517
-
Computing the order of a solvable permutation group
-
Sims, C. C. (1990). Computing the order of a solvable permutation group. J. Symb. Comput., 9, 699-705.
-
(1990)
J. Symb. Comput
, vol.9
, pp. 699-705
-
-
Sims, C.C.1
-
16
-
-
0003606505
-
Computation with Finitely Presented Groups
-
Cambridge, Cambridge University Press
-
Sims, C. C. (1994). Computation with Finitely Presented Groups, Cambridge, Cambridge University Press.
-
(1994)
-
-
Sims, C.C.1
-
18
-
-
0005478994
-
Eine Methode zur Normalisatorberechnung in Permutationsgruppen mit Anwendungen in der Konstruktion primitiver Gruppen
-
Dissertation, RWTH Aachen
-
Theißen, H. (1997). Eine Methode zur Normalisatorberechnung in Permutationsgruppen mit Anwendungen in der Konstruktion primitiver Gruppen. Dissertation, RWTH Aachen.
-
(1997)
-
-
Theißen, H.1
|