메뉴 건너뛰기




Volumn 53, Issue 7, 2002, Pages 719-727

A Bayesian framework for the combination of classifier outputs

Author keywords

Bayesian models; Classifier combination; Credit scoring; Meta Gaussian modelling

Indexed keywords

DECISION THEORY; MATHEMATICAL MODELS; PARAMETER ESTIMATION; PROBABILITY DENSITY FUNCTION; RANDOM ERRORS; REGRESSION ANALYSIS;

EID: 0036639370     PISSN: 01605682     EISSN: None     Source Type: Journal    
DOI: 10.1057/palgrave.jors.2601262     Document Type: Article
Times cited : (24)

References (19)
  • 9
    • 0003660631 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Technical Report, Department of Statistics, Stanford University, California
    • (1999)
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 10
    • 0031169205 scopus 로고    scopus 로고
    • Optimal approximation of discrete probability distribution with kth-order dependency and its application to combining multiple classifiers
    • (1997) Pattern Recog Lett , vol.18 , pp. 515-523
    • Kang, H.J.1    Kim, K.2    Kim, J.H.3
  • 12
    • 0009914209 scopus 로고
    • A meta-Gaussian distribution with specified marginals
    • Manuscripts, Department of Systems Engineering, University of Virginia, USA
    • (1995)
    • Krzysztofowicz, R.1    Kelly, K.S.2
  • 14
    • 4243412919 scopus 로고    scopus 로고
    • Bayesian methods for combining and constructing classifiers
    • PhD Dissertation, Department of Systems Engineering, University of Virginia, USA
    • (2001)
    • Zhu, H.1
  • 16
    • 26544442767 scopus 로고    scopus 로고
    • Verification of compositional precipitation forecasts
    • PhD Dissertation, Department of Systems Engineering, University of Virginia, USA
    • (1998)
    • Sigrest, A.1
  • 18
    • 0003408496 scopus 로고
    • UCI repository of machine learning databases
    • Department of Information and Computer Science, University of California, Irvine
    • (1995)
    • Murphy, P.M.1    Aha, D.W.2
  • 19
    • 0005691967 scopus 로고
    • A set of neural network benchmark problems and benchmarking rules
    • Technical Report 21/94, University Karlsruhe, Germany
    • (1994)
    • Prechelt, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.