-
2
-
-
0011350309
-
Enumeration of lozenge tilings of hexagons with a central triangular hole
-
M.Ciucu, T.Eisenkolbl, C.Krattenthaler and D. Zare, Enumeration of lozenge tilings of hexagons with a central triangular hole, J. Combin. Theory Ser. A. 95(2001), 251-334.
-
(2001)
J. Combin. Theory Ser. A
, vol.95
, pp. 251-334
-
-
Ciucu, M.1
Eisenkolbl, T.2
Krattenthaler, C.3
Zare, D.4
-
3
-
-
0000404710
-
The number of centered lozenge tilings of a symmetric hexagon
-
M.Ciucu and C. Krattenthaler, The number of centered lozenge tilings of a symmetric hexagon, J. Combin. Theory Ser. A. 86(1999), 103-126.
-
(1999)
J. Combin. Theory Ser. A
, vol.86
, pp. 103-126
-
-
Ciucu, M.1
Krattenthaler, C.2
-
4
-
-
85037255142
-
Enumeration of lozenge tilings of hexagons with cut off corners
-
to appear
-
M. Ciucu and C. Krattenthaler, Enumeration of lozenge tilings of hexagons with cut off corners, J. Combin. Theory Ser.A (to appear).
-
J. Combin. Theory Ser.A
-
-
Ciucu, M.1
Krattenthaler, C.2
-
5
-
-
0003202978
-
Rhombus tilings of a hexagon with two triangles missing on the symmetry axis
-
T. Eisenkolbl, Rhombus tilings of a hexagon with two triangles missing on the symmetry axis, Electr. J. Combin. 6(1) (1999), #R30.
-
(1999)
Electr. J. Combin
, vol.6
, Issue.1
-
-
Eisenkolbl, T.1
-
6
-
-
0001921457
-
The number of rhombus tilings of a symmetric hexagon which contain a fixed rhombus on the symmetry axis, I
-
M.Fulmek and C. Krattenthaler, The number of rhombus tilings of a symmetric hexagon which contain a fixed rhombus on the symmetry axis, I, Ann. Combin. 2(1998), 19-40.
-
(1998)
Ann. Combin
, vol.2
, pp. 19-40
-
-
Fulmek, M.1
Krattenthaler, C.2
-
7
-
-
0034408801
-
The number of rhombus tilings of a symmetric hexagon which contain a fixed rhombus on the symmetry axis, II
-
M.Fulmek and C. Krattenthaler, The number of rhombus tilings of a symmetric hexagon which contain a fixed rhombus on the symmetry axis, II, Europ. J. Combin. 21(2000), 601-640.
-
(2000)
Europ. J. Combin
, vol.21
, pp. 601-640
-
-
Fulmek, M.1
Krattenthaler, C.2
-
8
-
-
0000868570
-
Viennot, Binomial determinants, paths, and hook length formulae
-
I.M.Gessel and X. Viennot, Binomial determinants, paths, and hook length formulae, Adv. Math. 58(1985), 300-321.
-
(1985)
Adv. Math.
, vol.58
, pp. 300-321
-
-
Gessel, I.M.1
-
9
-
-
0038840100
-
Decision procedure for indefinite hypergeometric summation
-
R.W. Gosper, Decision procedure for indefinite hypergeometric summation, Proc. Natl. Acad. Sci. USA75(1978), 40-42.
-
(1978)
Proc. Natl. Acad. Sci. USA
, vol.75
, pp. 40-42
-
-
Gosper, R.W.1
-
10
-
-
0004155526
-
-
Addison-Wesley, Reading, Massachusetts
-
R.L.Graham, D. E.Knuth and O.Patashnik, Concrete mathematics, Addison-Wesley, Reading, Massachusetts, 1989.
-
(1989)
Concrete Mathematics
-
-
Graham, R.L.1
Knuth, D.E.2
Patashnik, O.3
-
11
-
-
0001411443
-
Some q-analogues of determinant identities which arose in plane partition enumeration
-
Art.B36e
-
C. Krattenthaler, Some q-analogues of determinant identities which arose in plane partition enumeration, Seminaire Lotharingien Combin. 36 (1996), Art.B36e, 23 pages.
-
(1996)
Seminaire Lotharingien Combin
, vol.36
, pp. 23
-
-
Krattenthaler, C.1
-
12
-
-
0011334925
-
Determinant identities and a generalization of the number of totally symmetric self-complementary plane partitions
-
C. Krattenthaler, Determinant identities and a generalization of the number of totally symmetric self-complementary plane partitions, Elect. J. Combin. 4(1) (1997), #R27.
-
(1997)
Elect. J. Combin.
, vol.4
, Issue.1
-
-
Krattenthaler, C.1
-
13
-
-
0345881231
-
An alternative evaluation of the Andrews-Burge determinant
-
B.E. Sagan and R.P. Stanley, eds., Birkhauser, Boston
-
C. Krattenthaler, An alternative evaluation of the Andrews-Burge determinant, in Mathematical essays in honor of Gian-Carlo Rota, B.E. Sagan and R.P. Stanley, eds., Birkhauser, Boston, 1998, 263-270.
-
(1998)
Mathematical Essays in Honor of Gian-Carlo Rota
, pp. 263-270
-
-
Krattenthaler, C.1
-
14
-
-
0011375794
-
A new proof of the M-R-R conjecture-including a generalization
-
C. Krattenthaler, A new proof of the M-R-R conjecture-including a generalization, J. Difference Eq. Appl. 5(1999), 335-351.
-
(1999)
J. Difference Eq. Appl
, vol.5
, pp. 335-351
-
-
Krattenthaler, C.1
-
15
-
-
0001830930
-
Advanced determinant calculus
-
Art.B42q
-
C. Krattenthaler, Advanced determinant calculus, Seminaire Lotharingien Combin. 42 (1999), Art.B42q, 66 pages.
-
(1999)
Seminaire Lotharingien Combin
, vol.42
, pp. 66
-
-
Krattenthale, C.1
-
16
-
-
0002518124
-
Proof of a determinant evaluation conjectured by Bombieri, Hunt and van der Poorten
-
C.Krattenthaler and D. Zeilberger, Proof of a determinant evaluation conjectured by Bombieri, Hunt and van der Poorten, New YorkJ. Math. 3(1997), 54-102.
-
(1997)
New Yorkj. Math.
, vol.3
, pp. 54-102
-
-
Krattenthaler, C.1
Zeilberger, D.2
-
17
-
-
1842529920
-
Another proof of the alternating sign matrix conjecture
-
G. Kuperberg, Another proof of the alternating sign matrix conjecture, Int. Math. Res. Notices3, (1996), 139-150.
-
(1996)
Int. Math. Res. Notices
, vol.3
, pp. 139-150
-
-
Kuperberg, G.1
-
18
-
-
33845907500
-
On the vector representations of induced matroids
-
B. Lindstrom, On the vector representations of induced matroids, Bull. London Math. Soc. 5(1973), 85-90.
-
(1973)
Bull. London Math. Soc
, vol.5
, pp. 85-90
-
-
Lindstrom, B.1
-
19
-
-
0011373943
-
When can the sum of (1/p)th of the binomial coefficients have closed form?
-
#R21
-
M. Petkovsek and H. S. Wilf, When can the sum of (1/p)th of the binomial coefficients have closed form?, Electron. J. Combin. 4(2) (1997), #R21,7 pages.
-
(1997)
Electron. J. Combin
, vol.4
, Issue.2
, pp. 7
-
-
Petkovsek, M.1
Wilf, H.S.2
-
23
-
-
0002777429
-
Nonintersecting paths, pfaffians and plane partitions
-
J.R. Stembridge, Nonintersecting paths, pfaffians and plane partitions, Adv. Math. 83(1990), 96-131.
-
(1990)
Adv. Math.
, vol.83
, pp. 96-131
-
-
Stembridge, J.R.1
|