메뉴 건너뛰기




Volumn 69, Issue 3, 2002, Pages 240-243

Asymptotic stress fields for stationary cracks along the gradient in functionally graded materials

Author keywords

[No Author keywords available]

Indexed keywords

ASYMPTOTIC STABILITY; CRACKS; DIFFERENTIAL EQUATIONS; ELASTIC MODULI; FINITE DIFFERENCE METHOD; FRACTURE; MATHEMATICAL TRANSFORMATIONS; SHEAR STRESS; TIME DOMAIN ANALYSIS;

EID: 0036588299     PISSN: 00218936     EISSN: None     Source Type: Journal    
DOI: 10.1115/1.1459072     Document Type: Article
Times cited : (71)

References (5)
  • 1
    • 0020816016 scopus 로고
    • The crack problem for a nonhomogeneous plane
    • Delale, F., and Erdogan, F., 1983, "The Crack Problem for a Nonhomogeneous Plane," ASME J. Appl. Mech., 50, pp. 609-614.
    • (1983) ASME J. Appl. Mech. , vol.50 , pp. 609-614
    • Delale, F.1    Erdogan, F.2
  • 2
    • 0022673735 scopus 로고
    • A Griffith crack problem for an inhomogeneons elastic material
    • Schovanec, L., 1986, "A Griffith Crack Problem for an Inhomogeneons Elastic Material," Acta Mech., 58, pp. 67-80.
    • (1986) Acta Mech. , vol.58 , pp. 67-80
    • Schovanec, L.1
  • 3
    • 0023349326 scopus 로고
    • Fracture of nonhomogeneous materials
    • Eischen, J.W., 1987, "Fracture of Nonhomogeneous Materials," Int. J. Fract., 34(3), pp. 3-22.
    • (1987) Int. J. Fract. , vol.34 , Issue.3 , pp. 3-22
    • Eischen, J.W.1
  • 4
    • 85136357190 scopus 로고
    • Bearing pressures and cracks
    • Westergaard, H.M., 1939, "Bearing Pressures and Cracks," ASME J. Appl. Mech., 6, pp. A49-A53.
    • (1939) ASME J. Appl. Mech. , vol.6
    • Westergaard, H.M.1
  • 5
    • 0001495658 scopus 로고
    • A critical re-examination of the Westergaard method for solving opening mode problem
    • Sanford, R.J., 1979, "A Critical Re-examination of the Westergaard Method for Solving Opening Mode Problem," Mech. Res. Commun., 6(5), pp. 289-294.
    • (1979) Mech. Res. Commun. , vol.6 , Issue.5 , pp. 289-294
    • Sanford, R.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.