메뉴 건너뛰기




Volumn 14, Issue 5, 2002, Pages 1071-1103

Learning to Recognize Three-Dimensional Objects

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ARTIFICIAL INTELLIGENCE; BIOLOGICAL MODEL; COMPUTER SYSTEM; PATTERN RECOGNITION;

EID: 0036585019     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976602753633394     Document Type: Article
Times cited : (47)

References (56)
  • 1
    • 0033208584 scopus 로고    scopus 로고
    • A computational model for visual selection
    • Amit, Y., & Geman, D. (1999). A computational model for visual selection. Neural Computation, 11(7), 1691-1715.
    • (1999) Neural Computation , vol.11 , Issue.7 , pp. 1691-1715
    • Amit, Y.1    Geman, D.2
  • 3
    • 0007563290 scopus 로고
    • Learning Boolean functions in an infinite attribute space
    • Blum, A. (1992). Learning Boolean functions in an infinite attribute space. Machine Learning, 9(4), 373-386.
    • (1992) Machine Learning , vol.9 , Issue.4 , pp. 373-386
    • Blum, A.1
  • 4
  • 6
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20(3), 273-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 13
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of online learning and an application to boosting
    • Freund, Y., & Schapire, R. (1997). A decision-theoretic generalization of online learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 15
    • 0032662978 scopus 로고    scopus 로고
    • A Winnow based approach to context-sensitive spelling correction
    • Special Issue on Machine Learning and Natural Language
    • Golding, A. R., & Roth, D. (1999). A Winnow based approach to context-sensitive spelling correction. Machine Learning, 34(1-3), 107-130. (Special Issue on Machine Learning and Natural Language.)
    • (1999) Machine Learning , vol.34 , Issue.1-3 , pp. 107-130
    • Golding, A.R.1    Roth, D.2
  • 16
    • 84898991622 scopus 로고    scopus 로고
    • From margin to sparsity
    • T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.) Cambridge, MA: MIT Press
    • Graepel, T., Herbrich, R., & Williamson, R. C. (2001). From margin to sparsity. In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems, 13 (pp. 210-216). Cambridge, MA: MIT Press.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 210-216
    • Graepel, T.1    Herbrich, R.2    Williamson, R.C.3
  • 17
    • 84898942883 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • M. I. Jordan, M. J. Kearns, & S. A. Solla (Eds.) Cambridge, MA: MIT Press
    • Hastie, T., & Tibshirani, R. (1998). Classification by pairwise coupling. In M. I. Jordan, M. J. Kearns, & S. A. Solla (Eds.), Advances in neural information processing systems, 10 (pp. 507-513). Cambridge, MA: MIT Press.
    • (1998) Advances in Neural Information Processing Systems , vol.10 , pp. 507-513
    • Hastie, T.1    Tibshirani, R.2
  • 18
    • 0002192516 scopus 로고
    • Decision theoretic generalizations of the PAC model for neural net and other learning applications
    • Haussler, D. (1992). Decision theoretic generalizations of the PAC model for neural net and other learning applications. Information and Computer, 100(1), 78-150.
    • (1992) Information and Computer , vol.100 , Issue.1 , pp. 78-150
    • Haussler, D.1
  • 20
    • 0027640858 scopus 로고
    • Learning in the presence of malicious error
    • Kearns, M., & Li, M. (1993). Learning in the presence of malicious error. SIAM Journal of Computing, 22(4), 807-837.
    • (1993) SIAM Journal of Computing , vol.22 , Issue.4 , pp. 807-837
    • Kearns, M.1    Li, M.2
  • 21
  • 23
    • 84969342575 scopus 로고
    • The perceptron algorithm vs. Winnow: Linear vs. logarithmic mistake bounds when few input variables are relevant
    • Santa Cruz, CA
    • Kivinen, J., & Warmuth, M. K. (1995b). The perceptron algorithm vs. Winnow: Linear vs. logarithmic mistake bounds when few input variables are relevant. In Proceedings of 8th Annual Conference on Computational Learning Theory (pp. 289-296). Santa Cruz, CA.
    • (1995) Proceedings of 8th Annual Conference on Computational Learning Theory , pp. 289-296
    • Kivinen, J.1    Warmuth, M.K.2
  • 24
    • 0030196473 scopus 로고    scopus 로고
    • On learning visual concepts and DNF formulae
    • Kushilevitz, E., & Roth, D. (1996). On learning visual concepts and DNF formulae. Machine Learning, 24(1), 65-85.
    • (1996) Machine Learning , vol.24 , Issue.1 , pp. 65-85
    • Kushilevitz, E.1    Roth, D.2
  • 26
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
    • Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2, 285-318.
    • (1988) Machine Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 27
  • 28
    • 0031570069 scopus 로고    scopus 로고
    • Seemore: Combing color, shape, and texture histogramming in a neurally-inspired approach to visual object recognition
    • Mel, B. W. (1997). Seemore: Combing color, shape, and texture histogramming in a neurally-inspired approach to visual object recognition. Neural Computation, 9, 777-804.
    • (1997) Neural Computation , vol.9 , pp. 777-804
    • Mel, B.W.1
  • 29
    • 0034170073 scopus 로고    scopus 로고
    • Minimizing binding errors using learned conjunctive features
    • Mel, B. W., & Fiser, J. (2000). Minimizing binding errors using learned conjunctive features. Neural Computation, 12, 247-278.
    • (2000) Neural Computation , vol.12 , pp. 247-278
    • Mel, B.W.1    Fiser, J.2
  • 31
    • 0029220876 scopus 로고
    • Visual learning and recognition of 3-D objects from appearance
    • Murase, H., & Nayar, S. K. (1995). Visual learning and recognition of 3-D objects from appearance. International Journal of Computer Vision, 14, 5-24.
    • (1995) International Journal of Computer Vision , vol.14 , pp. 5-24
    • Murase, H.1    Nayar, S.K.2
  • 33
    • 0031828472 scopus 로고    scopus 로고
    • Large-scale tests of a keyed, appearance-based 3-D object recognition system
    • Nelson, R. C., & Selinger, A. (1998). Large-scale tests of a keyed, appearance-based 3-D object recognition system. Vision Research, 38(15/16), 2469-2488.
    • (1998) Vision Research , vol.38 , Issue.15-16 , pp. 2469-2488
    • Nelson, R.C.1    Selinger, A.2
  • 35
    • 0000209334 scopus 로고    scopus 로고
    • Local feature analysis: A general statistical theory for object representation
    • Penev, P., & Atick, J. (1996). Local feature analysis: A general statistical theory for object representation. Network: Computation in Neural Systems, 7(3), 477-500.
    • (1996) Network: Computation in Neural Systems , vol.7 , Issue.3 , pp. 477-500
    • Penev, P.1    Atick, J.2
  • 36
    • 0025037991 scopus 로고
    • A network that learns to recognize 3D objects
    • Poggio, T., & Edelman, S. (1990). A network that learns to recognize 3D objects. Nature, 343, 263-266.
    • (1990) Nature , vol.343 , pp. 263-266
    • Poggio, T.1    Edelman, S.2
  • 38
    • 0029388264 scopus 로고
    • An active vision architecture based on iconic representations
    • Rao, R. P. N., & Ballard, D. H. (1995). An active vision architecture based on iconic representations. Artificial Intelligence, 78(1-2), 461-505.
    • (1995) Artificial Intelligence , vol.78 , Issue.1-2 , pp. 461-505
    • Rao, R.P.N.1    Ballard, D.H.2
  • 40
  • 42
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65, 386-407.
    • (1958) Psychological Review , vol.65 , pp. 386-407
    • Rosenblatt, F.1
  • 44
    • 0033872313 scopus 로고    scopus 로고
    • Recognition without correspondence using multidimensional receptive field histograms
    • Schiele, B. (2000). Recognition without correspondence using multidimensional receptive field histograms. International Journal of Computer Vision, 36(1), 31-50.
    • (2000) International Journal of Computer Vision , vol.36 , Issue.1 , pp. 31-50
    • Schiele, B.1
  • 50
    • 0033213769 scopus 로고    scopus 로고
    • Computation of pattern invariance in brain-like structures
    • Ullman, S., & Soloviev, S. (1999). Computation of pattern invariance in brain-like structures. Neural Networks, 12, 1021-1036.
    • (1999) Neural Networks , vol.12 , pp. 1021-1036
    • Ullman, S.1    Soloviev, S.2
  • 51
    • 0021518106 scopus 로고
    • A theory of the learnable
    • Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27(11), 1134-1142.
    • (1984) Communications of the ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1
  • 56
    • 0000320045 scopus 로고    scopus 로고
    • A SNoW-based face detector
    • S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.) Cambridge, MA: MIT Press
    • Yang, M.-H., Roth, D., & Ahuja, N. (2000b). A SNoW-based face detector. In S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.), Advances in neural information processing systems, 12 (pp. 855-861). Cambridge, MA: MIT Press.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 855-861
    • Yang, M.-H.1    Roth, D.2    Ahuja, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.