메뉴 건너뛰기




Volumn 50, Issue 5, 2002, Pages 1017-1026

Solving Fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions

Author keywords

Data compression with SVD; Fredholm integral; Laplace inversion; NMR; Tensor kernal

Indexed keywords

BUTLER-REEDS-DAWSON ALGORITHM; FREDHOLM INTEGRALS; LAPLACE INVERSION; SINGULAR VALUE DECOMPOSITION; TENSOR PRODUCT STRUCTURE;

EID: 0036571437     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/78.995059     Document Type: Article
Times cited : (634)

References (19)
  • 3
    • 0003820086 scopus 로고    scopus 로고
    • Algorithms for the regularization of ill-conditioned least squares problems with tensor product structure, and application to space-variant image restoration
    • Dept. Math., Linköping Univ., Linköping, Sweden, Rep. LiTH-MAT-R-1982-48
    • Eldén, L.1    Skoglund, I.2
  • 7
    • 0000570697 scopus 로고
    • Analysis of discrete ill-posed problems by means of the L-curve
    • Dec.
    • (1992) SIAM Rev. , vol.34 , Issue.4 , pp. 561-580
    • Hansen, P.C.1
  • 8
    • 0023570429 scopus 로고
    • The truncated SVD as a method for regularization
    • (1987) BIT , vol.27 , pp. 534-553
    • Hansen, P.C.1
  • 9
    • 0015127540 scopus 로고
    • A numerical method for solving Fredholm integral equations of the first kind using singular values
    • Sept.
    • (1971) SIAM J. Numer. Anal. , vol.8 , Issue.3 , pp. 616-622
    • Hanson, R.J.1
  • 13
    • 0001595602 scopus 로고    scopus 로고
    • Comparisons of parameter choice methods for regularization with discrete noisy data
    • (1998) Inv. Prob. , vol.14 , pp. 161-184
    • Lucas, M.A.1
  • 18
    • 0032409091 scopus 로고    scopus 로고
    • Truncated SVD methods for discrete ill-posed problems
    • (1998) Geophy. J. Int. , vol.135 , pp. 505-514
    • Xu, P.1
  • 19
    • 0000544453 scopus 로고
    • Practical approximate solutions to linear operator equations when the data are noisy
    • (1977) SIAM J. Num. Anal. , vol.15 , pp. 651-667
    • Wahba, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.