-
1
-
-
0028333514
-
A sublinear parallel algorithm for stable matching
-
Assoc. Comput. Mach.-Soc. for Industr. & Appl. Math., New York Philadelphia
-
T. Feder, N. Megiddo, and S. Plotkin, A sublinear parallel algorithm for stable matching, in Proceedings of SODA '94: The 5th ACM-SIAM Symposium on Discrete Algorithms, pp. 632-637, Assoc. Comput. Mach.-Soc. for Industr. & Appl. Math., New York Philadelphia, 1994.
-
(1994)
Proceedings of SODA '94: The 5th ACM-SIAM Symposium on Discrete Algorithms
, pp. 632-637
-
-
Feder, T.1
Megiddo, N.2
Plotkin, S.3
-
2
-
-
0003165311
-
College admissions and the stability of marriage
-
D. Gale and L. S. Shapley, College admissions and the stability of marriage, Amer. Math. Monthly 69 (1962), 9-15.
-
(1962)
Amer. Math. Monthly
, vol.69
, pp. 9-15
-
-
Gale, D.1
Shapley, L.S.2
-
3
-
-
0004127488
-
Computers and intractability
-
Freeman, San Francisco
-
M. R. Garey and D. S. Johnson, "Computers and Intractability," Freeman, San Francisco, 1979.
-
(1979)
-
-
Garey, M.R.1
Johnson, D.S.2
-
4
-
-
0024054675
-
The structure of the stable roommate problem - Efficient representation and enumeration of all stable assignments
-
D. Gusfield, The structure of the stable roommate problem - Efficient representation and enumeration of all stable assignments, SIAM J. Comput. 17, No. 4 (1988), 742-769.
-
(1988)
SIAM J. Comput.
, vol.17
, Issue.4
, pp. 742-769
-
-
Gusfield, D.1
-
5
-
-
0004135469
-
The stable marriage problem: Structure and algorithms
-
MIT Press, Cambridge, MA
-
D. Gusfield and R. W. Irving, "The Stable Marriage Problem: Structure and Algorithms," MIT Press, Cambridge, MA, 1989.
-
(1989)
-
-
Gusfield, D.1
Irving, R.W.2
-
7
-
-
0039468436
-
An efficient algorithm for the "stable roommates" problem
-
R. W. Irving, An efficient algorithm for the "stable roommates" problem, J. Algorithms 6 (1985), 577-595.
-
(1985)
J. Algorithms
, vol.6
, pp. 577-595
-
-
Irving, R.W.1
-
8
-
-
0003592880
-
On the stable room-mates problem
-
Technical Report CSC/86/R5, University of Glasgow, Department of Computing Science
-
R. W. Irving, "On the Stable Room-Mates Problem," Technical Report CSC/86/R5, University of Glasgow, Department of Computing Science, 1986.
-
(1986)
-
-
Irving, R.W.1
-
9
-
-
38149148462
-
Stable marriage and indifference
-
R. W. Irving, Stable marriage and indifference, Discrete Appl. Math. 48 (1994), 261-272.
-
(1994)
Discrete Appl. Math.
, vol.48
, pp. 261-272
-
-
Irving, R.W.1
-
10
-
-
84956869818
-
The hospitals/residents problem with ties
-
Springer-Verlag, Berlin/New York
-
R. W. Irving, D. F. Manlove, and S. Scott, The hospitals/residents problem with ties, in "Proceedings of SWAT 2000: The 7th Scandinavian Workshop on Algorithm Theory," Lecture Notes in Computer Science, Vol. 1851, pp. 259-271, Springer-Verlag, Berlin/New York, 2000.
-
(2000)
Proceedings of SWAT 2000: The 7th Scandinavian Workshop on Algorithm Theory, Lecture Notes in Computer Science
, vol.1851
, pp. 259-271
-
-
Irving, R.W.1
Manlove, D.F.2
Scott, S.3
-
11
-
-
84887418963
-
Stable marriage with incomplete lists and ties
-
Springer-Verlag, Berlin/New York
-
K. Iwama, D. Manlove, S. Miyazaki, and Y. Morita, Stable marriage with incomplete lists and ties, in "Proceedings of ICALP '99: The 26th International Colloquium on Automata, Languages, and Programming," Lecture Notes in Computer Science, Vol. 1644, pp. 443-452, Springer-Verlag, Berlin/New York, 1999.
-
(1999)
Proceedings of ICALP '99: The 26th International Colloquium on Automata, Languages, and Programming, Lecture Notes in Computer Science
, vol.1644
, pp. 443-452
-
-
Iwama, K.1
Manlove, D.2
Miyazaki, S.3
Morita, Y.4
-
12
-
-
0003201317
-
Stable marriage and its relation to other combinatorial problems
-
Am. Math. Soc., Providence; (English translation of "Marriages Stables," Les Presses de L'Université de Montréal, 1976.)
-
D. E. Knuth, "Stable Marriage and Its Relation to Other Combinatorial Problems," CRM Proceedings and Lecture Notes, Vol. 10, Am. Math. Soc., Providence, 1997. (English translation of "Marriages Stables," Les Presses de L'Université de Montréal, 1976.)
-
(1997)
CRM Proceedings and Lecture Notes
, vol.10
-
-
Knuth, D.E.1
-
13
-
-
0013290652
-
NP-completeness of stable marriage with partially ordered lists under strong stability
-
unpublished manuscript
-
D. F. Manlove, NP-completeness of stable marriage with partially ordered lists under strong stability, unpublished manuscript, 2000.
-
(2000)
-
-
Manlove, D.F.1
-
14
-
-
0037029336
-
Hard variants of stable marriage
-
to appear
-
D. F. Manlove, R. W. Irving, K. Iwana, S. Miyazaki, and Y. Morita, Hard variants of stable marriage, in Theor. Comput. Sci. to appear, 2002.
-
(2002)
Theor. Comput. Sci.
-
-
Manlove, D.F.1
Irving, R.W.2
Iwana, K.3
Miyazaki, S.4
Morita, Y.5
-
15
-
-
4244204654
-
On the complexity of stable matchings with and without ties
-
Ph.D. thesis, Yale University
-
E. Ronn, On the complexity of stable matchings with and without ties, Ph.D. thesis, Yale University, 1986.
-
(1986)
-
-
Ronn, E.1
-
16
-
-
38249020647
-
NP-complete stable matching problems
-
E. Ronn, NP-complete stable matching problems, J. Algorithms 11 (1990), 285-304.
-
(1990)
J. Algorithms
, vol.11
, pp. 285-304
-
-
Ronn, E.1
-
17
-
-
84936379779
-
The evolution of the labor market for medical interns and residents: A case study in game theory
-
A. E. Roth, The evolution of the labor market for medical interns and residents: A case study in game theory, J. Political Econ. 92, No. 6 (1984), 991-1016.
-
(1984)
J. Political Econ.
, vol.92
, Issue.6
, pp. 991-1016
-
-
Roth, A.E.1
-
18
-
-
0000883187
-
A necessary and sufficient condition for the existence of a complete stable matching
-
J. J. M. Tan, A necessary and sufficient condition for the existence of a complete stable matching, J. Algorithms 12 (1991), 154-178.
-
(1991)
J. Algorithms
, vol.12
, pp. 154-178
-
-
Tan, J.J.M.1
-
19
-
-
0001559260
-
Edge dominating sets in graphs
-
M. Yannakakis and F. Gavril, Edge dominating sets in graphs, SIAM J. Appl. Math. 18, No. 1 (1980), 364-372.
-
(1980)
SIAM J. Appl. Math.
, vol.18
, Issue.1
, pp. 364-372
-
-
Yannakakis, M.1
Gavril, F.2
|