메뉴 건너뛰기




Volumn 49, Issue 3, 2002, Pages 297-314

Mass-conserving solutions to the discrete coagulation-fragmentation model with diffusion

Author keywords

Coagulation of clusters; Smoluchowski's model; System of reaction diffusion equations

Indexed keywords

BROWNIAN MOVEMENT; MATHEMATICAL MODELS; SET THEORY; THEOREM PROVING;

EID: 0036532756     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0362-546X(01)00108-0     Document Type: Article
Times cited : (27)

References (34)
  • 1
    • 51249186677 scopus 로고
    • Dual semigroups and second order linear elliptic boundary value problems
    • (1983) Israel J. Math. , vol.45 , pp. 225
    • Amann, H.1
  • 7
    • 0000130527 scopus 로고
    • Existence and uniqueness of density conserving solutions to the coagulation-fragmentation equations with strong fragmentation
    • (1995) J. Math. Anal. Appl. , vol.192 , pp. 892
    • Da Costa, F.P.1
  • 13
    • 0032474307 scopus 로고    scopus 로고
    • Existence of gelling solutions for coagulation-fragmentation equations
    • (1998) Comm. Math. Phys. , vol.194 , pp. 541
    • Jeon, I.1
  • 28
    • 0000136452 scopus 로고
    • Coagulation-diffusion systems: Derivation and existence of solutions for the diffuse interface structure equations
    • (1990) Phys. D , vol.46 , pp. 351
    • Slemrod, M.1
  • 33
    • 36549102130 scopus 로고
    • Generalized theory of nucleation kinetics. IV. Nucleation as diffusion in the space of cluster dimensions, positions, orientations, and internal structure
    • (1986) J. Chem. Phys. , vol.85 , pp. 3042
    • Ziabicki, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.