-
2
-
-
0005143023
-
Irreducibility and primitivity using Markov maps
-
N. Friedman and A. Boyarsky, "Irreducibility and primitivity using Markov maps," Linear Algebr. Appl. 37, 103-117 (1981).
-
(1981)
Linear Algebr. Appl.
, vol.37
, pp. 103-117
-
-
Friedman, N.1
Boyarsky, A.2
-
3
-
-
0005181446
-
Matrices and eigenfunctions induced by Markov maps
-
N. Friedman and A. Boyarsky, "Matrices and eigenfunctions induced by Markov maps," Linear Algebr. Appl. 38, 141-147 (1981).
-
(1981)
Linear Algebr. Appl.
, vol.38
, pp. 141-147
-
-
Friedman, N.1
Boyarsky, A.2
-
4
-
-
0005210490
-
Construction of ergodic transformations
-
N. Friedman and A. Boyarsky, "Construction of ergodic transformations," Adv. Math. 45, 213-254 (1982).
-
(1982)
Adv. Math.
, vol.45
, pp. 213-254
-
-
Friedman, N.1
Boyarsky, A.2
-
7
-
-
0017185443
-
Simple mathematical models with very complicated dynamics
-
R. May, "Simple mathematical models with very complicated dynamics," Nature (London) 261, 459-467 (1976).
-
(1976)
Nature (London)
, vol.261
, pp. 459-467
-
-
May, R.1
-
8
-
-
0026018798
-
A model for ion channel kinetics using deterministic chaotic rather than stochastic processes
-
L. Leibovitch and T. Toth, "A model for ion channel kinetics using deterministic chaotic rather than stochastic processes," J. Theor. Biol. 148, 243-267 (1991).
-
(1991)
J. Theor. Biol.
, vol.148
, pp. 243-267
-
-
Leibovitch, L.1
Toth, T.2
-
9
-
-
85047674109
-
Direct calculation of metric entropy from time series
-
K.M. Short, "Direct calculation of metric entropy from time series," J. Comput. Phys. 104, 162-172 (1993).
-
(1993)
J. Comput. Phys.
, vol.104
, pp. 162-172
-
-
Short, K.M.1
-
10
-
-
0000318085
-
A matrix solution to the inverse Peron-Frobenius problem
-
P. Góra and A. Boyarsky, "A matrix solution to the inverse Peron-Frobenius problem," Proc. Am. Math. Soc. 118, 409-414 (1993).
-
(1993)
Proc. Am. Math. Soc.
, vol.118
, pp. 409-414
-
-
Góra, P.1
Boyarsky, A.2
-
11
-
-
0034314643
-
Testing whether two chaotic one-dimensional processes are dynamically identical
-
G.-C. Yuan, J.A. Yorke, T.L. Carroll, E. Ott, and L.M. Pecora, "Testing whether two chaotic one-dimensional processes are dynamically identical," Phys. Rev. Lett. 85, 4265-4268 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 4265-4268
-
-
Yuan, G.-C.1
Yorke, J.A.2
Carroll, T.L.3
Ott, E.4
Pecora, L.M.5
|