메뉴 건너뛰기




Volumn 50, Issue 2, 2002, Pages 389-399

A Bayesian approach to characterizing uncertainty in inverse problems using coarse and fine-scale information

Author keywords

Coupled MCMC; Flow in porous media; Hydrology; Markov chain Monte Carlo; Posterior simulation; SPECT; Stochastic simulation

Indexed keywords

COMPUTATIONAL METHODS; COMPUTER SIMULATION; HYDROLOGY; INVERSE PROBLEMS; MARKOV PROCESSES; MONTE CARLO METHODS; POROUS MATERIALS; RANDOM PROCESSES; TOMOGRAPHY;

EID: 0036475296     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/78.978393     Document Type: Article
Times cited : (64)

References (26)
  • 4
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 8
    • 0041902434 scopus 로고    scopus 로고
    • General over-relaxation Markov chain Monte Carlo algorithms for Gaussian densities
    • (2001) Statist. Probab. Lett.
  • 10
    • 77956890234 scopus 로고
    • Monte carlo sampling methods using Markov chains and their applications
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 11
    • 84972543992 scopus 로고
    • Methods for approximating integrals in statistics with special emphasis on Bayesian integration problems (disc: V11 p54-64)
    • (1995) Statist. Sci. , vol.10 , pp. 254-272
    • Evans, M.1    Swartz, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.