-
1
-
-
0003858275
-
Set theory
-
A.K. Peters, Ltd., Wellesley, MA
-
T. Bartoszyński and H. Judah, Set Theory. On the Structure of the Real Line, A.K. Peters, Ltd., Wellesley, MA, 1995.
-
(1995)
On the Structure of the Real Line
-
-
Bartoszyński, T.1
Judah, H.2
-
2
-
-
0002617791
-
Iterated forcing
-
Surveys in Set Theory, Cambridge University Press, Cambridge-New York
-
J. Baumgartner, Iterated forcing, in Surveys in Set Theory, London Mathematical Society Lecture Notes Series 87, Cambridge University Press, Cambridge-New York, 1983, pp. 1-59.
-
(1983)
London Mathematical Society Lecture Notes Series
, vol.87
, pp. 1-59
-
-
Baumgartner, J.1
-
4
-
-
51249190478
-
d analogue of Valentine's theorem on 3-convex sets
-
d analogue of Valentine's theorem on 3-convex sets, Israel Journal of Mathematics 24 (1976), 206-210.
-
(1976)
Israel Journal of Mathematics
, vol.24
, pp. 206-210
-
-
Breen, M.1
-
5
-
-
51249191397
-
A decomposition theorem for m-convex sets
-
M. Breen, A decomposition theorem for m-convex sets, Israel Journal of Mathematics 24 (1976), 211-216.
-
(1976)
Israel Journal of Mathematics
, vol.24
, pp. 211-216
-
-
Breen, M.1
-
6
-
-
51249187231
-
General decomposition theorems for m-convex sets in the plane
-
M. Breen and D.C. Kay, General decomposition theorems for m-convex sets in the plane, Israel Journal of Mathematics 24 (1976), 217-233.
-
(1976)
Israel Journal of Mathematics
, vol.24
, pp. 217-233
-
-
Breen, M.1
Kay, D.C.2
-
7
-
-
84976111266
-
A condition for a compact plane set to be a union of finitely many convex sets
-
H.G. Eggleston, A condition for a compact plane set to be a union of finitely many convex sets, Proceedings of the Cambridge Philosophical Society 76 (1974), 61-66.
-
(1974)
Proceedings of the Cambridge Philosophical Society
, vol.76
, pp. 61-66
-
-
Eggleston, H.G.1
-
9
-
-
0001944575
-
The generalized continuum hypothesis can fail everywhere
-
M. Foreman and W.H. Woodin, The generalized continuum hypothesis can fail everywhere, Annals of Mathematics (2) 133 (1991), 1-35.
-
(1991)
Annals of Mathematics (2)
, vol.133
, pp. 1-35
-
-
Foreman, M.1
Woodin, W.H.2
-
12
-
-
0012036784
-
Proof of a conjecture of S. Ruziewiez
-
A. Hajnal, Proof of a conjecture of S. Ruziewiez, Fundamenta Mathematicae 50 (1961/1962), 123-128.
-
(1961)
Fundamenta Mathematicae
, vol.50
, pp. 123-128
-
-
Hajnal, A.1
-
13
-
-
0003360120
-
Multiple forcing
-
Cambridge University Press, Cambridge-New York
-
T. Jech, Multiple Forcing, Cambridge Tracts in Mathematics, 88, Cambridge University Press, Cambridge-New York, 1986.
-
(1986)
Cambridge Tracts in Mathematics
, vol.88
-
-
Jech, T.1
-
15
-
-
0001012579
-
Convexity ranks in higher dimension
-
M. Kojman, Convexity ranks in higher dimension, Fundamenta Mathematicae 164 (2000), 143-163.
-
(2000)
Fundamenta Mathematicae
, vol.164
, pp. 143-163
-
-
Kojman, M.1
-
17
-
-
51249175141
-
Sets in a Euclidean space which are not a countable union of convex subsets
-
M. Kojman, M.A. Perles and S. Shelah, Sets in a Euclidean space which are not a countable union of convex subsets, Israel Journal of Mathematics 70 (1990), 313-342.
-
(1990)
Israel Journal of Mathematics
, vol.70
, pp. 313-342
-
-
Kojman, M.1
Perles, M.A.2
Shelah, S.3
-
18
-
-
84968468701
-
Finite unions of convex sets
-
J.F. Lawrence, Jr., W.R. Hare and J.W. Kennely, Finite unions of convex sets, Proceedings of the American Mathematical Society 34 (1972), 225-228.
-
(1972)
Proceedings of the American Mathematical Society
, vol.34
, pp. 225-228
-
-
Lawrence, J.F.1
Hare, W.R.2
Kennely, J.W.3
-
22
-
-
0000098287
-
The monadic theory of order
-
S. Shelah, The monadic theory of order, Annals of Mathematics (2) 102 (1975), 379-419.
-
(1975)
Annals of Mathematics (2)
, vol.102
, pp. 379-419
-
-
Shelah, S.1
-
23
-
-
0001832837
-
Borel sets with large squares
-
S. Shelah, Borel sets with large squares, Fundamenta Mathematicae 159 (1999), 1-50.
-
(1999)
Fundamenta Mathematicae
, vol.159
, pp. 1-50
-
-
Shelah, S.1
|