-
2
-
-
10644242971
-
A combinatorial approach to reducibility of mapping classes
-
(Gottingen, 1991 /Seattle, WA, 1991), Amer. Math. Soc., Providence, RI
-
D. Benardete, M. Gutierrez, and Z. Nitecki. “A combinatorial approach to reducibility of mapping classes.” In Mapping class groups and moduli spaces of Riemann surfaces (Gottingen, 1991 /Seattle, WA, 1991), pp. 1-31, Amer. Math. Soc., Providence, RI, 1993.
-
(1993)
Mapping Class Groups and moduli Spaces of Riemann Surfaces
, pp. 1-31
-
-
Benardete, D.1
Gutierrez, M.2
Nitecki, Z.3
-
4
-
-
0001354876
-
Train-tracks for surface homeomorphisms
-
M. Bestvina and M. Handel. “Train-tracks for surface homeomorphisms.” Topology 34: 1 (1995), 109-140.
-
(1995)
Topology
, vol.34
, Issue.1
, pp. 109-140
-
-
Bestvina, M.1
Handel, M.2
-
5
-
-
0003662966
-
-
Preprint, Boston University (the results of this preprint are included in the published paper [Boyland 94])
-
P. Boyland. emphBraid types and a topological method of proving positive entropy, Preprint, Boston University (the results of this preprint are included in the published paper [Boyland 94]), 1984.
-
(1984)
Emphbraid Types and a topological Method of Proving Positive Entropy
-
-
Boyland, P.1
-
6
-
-
51249168665
-
Rotation sets and monotone periodic orbits for annulus homeomorphisms
-
P. Boyland, “Rotation sets and monotone periodic orbits for annulus homeomorphisms.” Comment. Math. Helv. 2 (1992), 203-213.
-
(1992)
Comment. Math. Helv
, vol.2
, pp. 203-213
-
-
Boyland, P.1
-
7
-
-
0001482567
-
Topological methods in surface dynamics
-
P. Boyland. “Topological methods in surface dynamics.” Topology Appl. 58: 3 (1994), 223-298.
-
(1994)
Topology Appl
, vol.58
, Issue.3
, pp. 223-298
-
-
Boyland, P.1
-
8
-
-
0033438688
-
Pruning fronts and the formation of horseshoes
-
A. de Carvalho. “Pruning fronts and the formation of horseshoes.” Ergodic Theory Dynam. Systems 19: 4 (1999), 851-894.
-
(1999)
Ergodic Theory Dynam. Systems
, vol.19
, Issue.4
, pp. 851-894
-
-
De Carvalho, A.1
-
11
-
-
0011999131
-
Pruning theory and Thurstons classification of surface homeomorphisms
-
A. de Carvalho and T. Hall, “Pruning theory and Thurston’s classification of surface homeomorphisms.” J. European Math. Soc. 3: 4 (2001), 287-333.
-
(2001)
J. European Math. Soc
, vol.3
, Issue.4
, pp. 287-333
-
-
De Carvalho, A.1
Hall, T.2
-
12
-
-
0003509599
-
-
Second ed., Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA
-
R. Devaney. An introduction to chaotic dynamical systems, Second ed., Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1989.
-
(1989)
An Introduction to Chaotic dynamical Systems
-
-
Devaney, R.1
-
14
-
-
0001816437
-
Cycles for disk homeomorphisms and thick trees
-
(South Hadley, MA, 1992), Amer. Math. Soc., Providence, RI
-
J. Franks and M. Misiurewicz. “Cycles for disk homeomorphisms and thick trees.” in Nielsen theory and dynamical systems (South Hadley, MA, 1992), pp. 69-139, Amer. Math. Soc., Providence, RI, 1993.
-
(1993)
Nielsen Theory and Dynamical Systems
, pp. 69-139
-
-
Franks, J.1
Misiurewicz, M.2
-
15
-
-
85023947768
-
-
T. Hall. Software available from http://www.liv.ac.uk/~tobyhall/hs/.
-
-
-
Hall, T.1
-
16
-
-
84974249922
-
Unremovable periodic orbits of homeomorphisms
-
T. Hall. “Unremovable periodic orbits of homeomorphisms.” Math. Proc. Cambridge Philos. Soc. 110: 3 (1991), 523-531.
-
(1991)
Math. Proc. Cambridge Philos. Soc
, vol.110
, Issue.3
, pp. 523-531
-
-
Hall, T.1
-
17
-
-
0000997452
-
The creation of horseshoes
-
T. Hall. “The creation of horseshoes.” Nonlinearity 7: 3 (1994), 861-924.
-
(1994)
Nonlinearity
, vol.7
, Issue.3
, pp. 861-924
-
-
Hall, T.1
-
20
-
-
0021942589
-
Knotted periodic orbits in suspensions of Smales horseshoe: Torus knots and bifurcation sequences
-
P. Holmes and R. Williams. “Knotted periodic orbits in suspensions of Smale’s horseshoe: torus knots and bifurcation sequences.” Arch. Rational Mech. Anal. 90: 2 (1985), 115-194.
-
(1985)
Arch. Rational Mech. Anal
, vol.90
, Issue.2
, pp. 115-194
-
-
Holmes, P.1
Williams, R.2
-
21
-
-
51649161951
-
Lyapunov exponents, entropy and periodic orbits for diffeomorphisms
-
A. Katok. “Lyapunov exponents, entropy and periodic orbits for diffeomorphisms.” Inst. Hautes Etudes Set. Publ. Math. 51 (1980), 137-173.
-
(1980)
Inst. Hautes Etudes Set. Publ. Math
, vol.51
, pp. 137-173
-
-
Katok, A.1
-
22
-
-
84963002117
-
Pseudo-Anosov maps and invariant train tracks in the disc: A finite algorithm
-
J. Los. “Pseudo-Anosov maps and invariant train tracks in the disc: a finite algorithm.” Proc. London Math. Soc. (S) 66: 2 (1993), 400-430.
-
(1993)
Proc. London Math. Soc. (S)
, vol.66
, Issue.2
, pp. 400-430
-
-
Los, J.1
-
23
-
-
84968514104
-
Differentiable dynamical systems
-
S. Smale. “Differentiable dynamical systems.” Bull. Amer. Math. Soc. 73 (1967), 747-817.
-
(1967)
Bull. Amer. Math. Soc
, vol.73
, pp. 747-817
-
-
Smale, S.1
-
24
-
-
84968476184
-
On the geometry and dynamics of diffeomorphisms of surfaces
-
W. Thurston. “On the geometry and dynamics of diffeomorphisms of surfaces.” Bull. Amer. Math. Soc. (N.S.) 19: 2 (1988), 417-431.
-
(1988)
Bull. Amer. Math. Soc. (N.S.)
, vol.19
, Issue.2
, pp. 417-431
-
-
Thurston, W.1
|