메뉴 건너뛰기




Volumn 11, Issue 2, 2002, Pages 271-288

The forcing relation for horseshoe braid types

Author keywords

Braid forcing; Horseshoe periodic orbits

Indexed keywords


EID: 0036452903     PISSN: 10586458     EISSN: 1944950X     Source Type: Journal    
DOI: 10.1080/10586458.2002.10504691     Document Type: Article
Times cited : (16)

References (24)
  • 2
    • 10644242971 scopus 로고
    • A combinatorial approach to reducibility of mapping classes
    • (Gottingen, 1991 /Seattle, WA, 1991), Amer. Math. Soc., Providence, RI
    • D. Benardete, M. Gutierrez, and Z. Nitecki. “A combinatorial approach to reducibility of mapping classes.” In Mapping class groups and moduli spaces of Riemann surfaces (Gottingen, 1991 /Seattle, WA, 1991), pp. 1-31, Amer. Math. Soc., Providence, RI, 1993.
    • (1993) Mapping Class Groups and moduli Spaces of Riemann Surfaces , pp. 1-31
    • Benardete, D.1    Gutierrez, M.2    Nitecki, Z.3
  • 4
    • 0001354876 scopus 로고
    • Train-tracks for surface homeomorphisms
    • M. Bestvina and M. Handel. “Train-tracks for surface homeomorphisms.” Topology 34: 1 (1995), 109-140.
    • (1995) Topology , vol.34 , Issue.1 , pp. 109-140
    • Bestvina, M.1    Handel, M.2
  • 5
    • 0003662966 scopus 로고
    • Preprint, Boston University (the results of this preprint are included in the published paper [Boyland 94])
    • P. Boyland. emphBraid types and a topological method of proving positive entropy, Preprint, Boston University (the results of this preprint are included in the published paper [Boyland 94]), 1984.
    • (1984) Emphbraid Types and a topological Method of Proving Positive Entropy
    • Boyland, P.1
  • 6
    • 51249168665 scopus 로고
    • Rotation sets and monotone periodic orbits for annulus homeomorphisms
    • P. Boyland, “Rotation sets and monotone periodic orbits for annulus homeomorphisms.” Comment. Math. Helv. 2 (1992), 203-213.
    • (1992) Comment. Math. Helv , vol.2 , pp. 203-213
    • Boyland, P.1
  • 7
    • 0001482567 scopus 로고
    • Topological methods in surface dynamics
    • P. Boyland. “Topological methods in surface dynamics.” Topology Appl. 58: 3 (1994), 223-298.
    • (1994) Topology Appl , vol.58 , Issue.3 , pp. 223-298
    • Boyland, P.1
  • 8
    • 0033438688 scopus 로고    scopus 로고
    • Pruning fronts and the formation of horseshoes
    • A. de Carvalho. “Pruning fronts and the formation of horseshoes.” Ergodic Theory Dynam. Systems 19: 4 (1999), 851-894.
    • (1999) Ergodic Theory Dynam. Systems , vol.19 , Issue.4 , pp. 851-894
    • De Carvalho, A.1
  • 11
    • 0011999131 scopus 로고    scopus 로고
    • Pruning theory and Thurstons classification of surface homeomorphisms
    • A. de Carvalho and T. Hall, “Pruning theory and Thurston’s classification of surface homeomorphisms.” J. European Math. Soc. 3: 4 (2001), 287-333.
    • (2001) J. European Math. Soc , vol.3 , Issue.4 , pp. 287-333
    • De Carvalho, A.1    Hall, T.2
  • 12
    • 0003509599 scopus 로고
    • Second ed., Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA
    • R. Devaney. An introduction to chaotic dynamical systems, Second ed., Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1989.
    • (1989) An Introduction to Chaotic dynamical Systems
    • Devaney, R.1
  • 14
    • 0001816437 scopus 로고
    • Cycles for disk homeomorphisms and thick trees
    • (South Hadley, MA, 1992), Amer. Math. Soc., Providence, RI
    • J. Franks and M. Misiurewicz. “Cycles for disk homeomorphisms and thick trees.” in Nielsen theory and dynamical systems (South Hadley, MA, 1992), pp. 69-139, Amer. Math. Soc., Providence, RI, 1993.
    • (1993) Nielsen Theory and Dynamical Systems , pp. 69-139
    • Franks, J.1    Misiurewicz, M.2
  • 15
    • 85023947768 scopus 로고    scopus 로고
    • T. Hall. Software available from http://www.liv.ac.uk/~tobyhall/hs/.
    • Hall, T.1
  • 16
    • 84974249922 scopus 로고
    • Unremovable periodic orbits of homeomorphisms
    • T. Hall. “Unremovable periodic orbits of homeomorphisms.” Math. Proc. Cambridge Philos. Soc. 110: 3 (1991), 523-531.
    • (1991) Math. Proc. Cambridge Philos. Soc , vol.110 , Issue.3 , pp. 523-531
    • Hall, T.1
  • 17
    • 0000997452 scopus 로고
    • The creation of horseshoes
    • T. Hall. “The creation of horseshoes.” Nonlinearity 7: 3 (1994), 861-924.
    • (1994) Nonlinearity , vol.7 , Issue.3 , pp. 861-924
    • Hall, T.1
  • 20
    • 0021942589 scopus 로고
    • Knotted periodic orbits in suspensions of Smales horseshoe: Torus knots and bifurcation sequences
    • P. Holmes and R. Williams. “Knotted periodic orbits in suspensions of Smale’s horseshoe: torus knots and bifurcation sequences.” Arch. Rational Mech. Anal. 90: 2 (1985), 115-194.
    • (1985) Arch. Rational Mech. Anal , vol.90 , Issue.2 , pp. 115-194
    • Holmes, P.1    Williams, R.2
  • 21
    • 51649161951 scopus 로고
    • Lyapunov exponents, entropy and periodic orbits for diffeomorphisms
    • A. Katok. “Lyapunov exponents, entropy and periodic orbits for diffeomorphisms.” Inst. Hautes Etudes Set. Publ. Math. 51 (1980), 137-173.
    • (1980) Inst. Hautes Etudes Set. Publ. Math , vol.51 , pp. 137-173
    • Katok, A.1
  • 22
    • 84963002117 scopus 로고
    • Pseudo-Anosov maps and invariant train tracks in the disc: A finite algorithm
    • J. Los. “Pseudo-Anosov maps and invariant train tracks in the disc: a finite algorithm.” Proc. London Math. Soc. (S) 66: 2 (1993), 400-430.
    • (1993) Proc. London Math. Soc. (S) , vol.66 , Issue.2 , pp. 400-430
    • Los, J.1
  • 23
    • 84968514104 scopus 로고
    • Differentiable dynamical systems
    • S. Smale. “Differentiable dynamical systems.” Bull. Amer. Math. Soc. 73 (1967), 747-817.
    • (1967) Bull. Amer. Math. Soc , vol.73 , pp. 747-817
    • Smale, S.1
  • 24
    • 84968476184 scopus 로고
    • On the geometry and dynamics of diffeomorphisms of surfaces
    • W. Thurston. “On the geometry and dynamics of diffeomorphisms of surfaces.” Bull. Amer. Math. Soc. (N.S.) 19: 2 (1988), 417-431.
    • (1988) Bull. Amer. Math. Soc. (N.S.) , vol.19 , Issue.2 , pp. 417-431
    • Thurston, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.