-
1
-
-
0035872026
-
Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces
-
to appear
-
Ambrosio, L.: Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces. - Adv. Math. (to appear).
-
Adv. Math.
-
-
Ambrosio, L.1
-
2
-
-
85037781488
-
Rectifiable sets in metric and Banach spaces
-
to appear
-
Ambrosio, L., and B. Kirchheim: Rectifiable sets in metric and Banach spaces. - Math. Ann. (to appear).
-
Math. Ann.
-
-
Ambrosio, L.1
Kirchheim, B.2
-
3
-
-
0000106687
-
Currents in metric spaces
-
Ambrosio, L., and B. Kirchheim: Currents in metric spaces. - Acta Math. 185, 1-80, 2000.
-
(2000)
Acta Math.
, vol.185
, pp. 1-80
-
-
Ambrosio, L.1
Kirchheim, B.2
-
6
-
-
0002299746
-
The tangent space in sub-Riemannian geometry
-
edited by A. Bellaïche and J. Risler, Birkhäuser Verlag, Basel
-
Bellaïche, A.: The tangent space in sub-Riemannian geometry. - In: Subriemannian Geometry, Progr. Math. 144, edited by A. Bellaïche and J. Risler, Birkhäuser Verlag, Basel, 1996.
-
(1996)
Subriemannian Geometry, Progr. Math.
, vol.144
-
-
Bellaïche, A.1
-
7
-
-
0001189770
-
The geometric Sobolev embedding for vector fields and the isoperimetric inequality
-
Capogna, L., D. Danielli, and N. Garofalo: The geometric Sobolev embedding for vector fields and the isoperimetric inequality. - Comm. Anal. Geom. 2, 1994, 203-215.
-
(1994)
Comm. Anal. Geom.
, vol.2
, pp. 203-215
-
-
Capogna, L.1
Danielli, D.2
Garofalo, N.3
-
8
-
-
0033456306
-
Differentiability of Lipschitz functions on metric measure spaces
-
Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. - Geom. Funct. Anal. 9, 1999, 428-517.
-
(1999)
Geom. Funct. Anal.
, vol.9
, pp. 428-517
-
-
Cheeger, J.1
-
9
-
-
84962987956
-
Increasing sequence of sets and Hausdorff measure
-
Davies, R.O.: Increasing sequence of sets and Hausdorff measure. - Proc. London Math. Soc. 20, 1970, 222-236.
-
(1970)
Proc. London Math. Soc.
, vol.20
, pp. 222-236
-
-
Davies, R.O.1
-
10
-
-
0000014518
-
Traces inequalities for Carnot-Cara-théodory spaces and applications
-
Danielli, D., N. Garofalo, and D.M. Nhieu: Traces inequalities for Carnot-Cara-théodory spaces and applications. - Ann. Scuola Norm. Sup. 27, 1998, 195-252.
-
(1998)
Ann. Scuola Norm. Sup.
, vol.27
, pp. 195-252
-
-
Danielli, D.1
Garofalo, N.2
Nhieu, D.M.3
-
12
-
-
0001229163
-
Subelliptic eigenvalue problems
-
Chicago, 1980, edited by W. Beckner et al., Wadsworth
-
Fefferman, C., and D.H. Phong: Subelliptic eigenvalue problems. - In: Proceedings of the Conference on Harmonic Analysis, Chicago, 1980, edited by W. Beckner et al., Wadsworth, pp. 590-606, 1981.
-
(1981)
Proceedings of the Conference on Harmonic Analysis
, pp. 590-606
-
-
Fefferman, C.1
Phong, D.H.2
-
13
-
-
0001594749
-
Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields
-
Franchi, B., R. Serapioni, and F. Serra Cassano: Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields. - Houston J. Math. 22, 1996, 859-889.
-
(1996)
Houston J. Math.
, vol.22
, pp. 859-889
-
-
Franchi, B.1
Serapioni, R.2
Serra, C.F.3
-
14
-
-
0033177497
-
Sets of finite perimeter on the Heisenberg group
-
Franchi, B., R. Serapioni, and F. Serra Cassano: Sets of finite perimeter on the Heisenberg group. - C. R. Acad. Sci. Paris 329, 1999, 183-188.
-
(1999)
C. R. Acad. Sci. Paris
, vol.329
, pp. 183-188
-
-
Franchi, B.1
Serapioni, R.2
Serra, C.F.3
-
15
-
-
0035605009
-
Rectifiability and perimeter in the Heisenberg group
-
to appear
-
Franchi, B., R. Serapioni, and F. Serra Cassano: Rectifiability and perimeter in the Heisenberg group. - Math. Ann. (to appear).
-
Math. Ann.
-
-
Franchi, B.1
Serapioni, R.2
Serra, C.F.3
-
16
-
-
0030488404
-
Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces
-
Garofalo, N., and D.M. Nhieu: Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. - Comm. Pure Appl. Math. 49, 1996, 1081-1144.
-
(1996)
Comm. Pure Appl. Math.
, vol.49
, pp. 1081-1144
-
-
Garofalo, N.1
Nhieu, D.M.2
-
17
-
-
0002299742
-
Carnot-Carathéodory spaces seen from within
-
edited by A. Bellaíche and J. Risler, Birkhäuser Verlag, Basel
-
Gromov, M.: Carnot-Carathéodory spaces seen from within. - In: Subriemannian Geometry, Progr. Math. 144, edited by A. Bellaíche and J. Risler, Birkhäuser Verlag, Basel, 1996.
-
(1996)
Subriemannian Geometry, Progr. Math.
, vol.144
-
-
Gromov, M.1
-
19
-
-
84966252260
-
Rectifiable metric spaces: Local structure and regularity of the Hausdorff measure
-
Kirchheim, B.: Rectifiable metric spaces: local structure and regularity of the Hausdorff measure. - Proc. Amer. Math. Soc. 121, 1994, 113-123.
-
(1994)
Proc. Amer. Math. Soc.
, vol.121
, pp. 113-123
-
-
Kirchheim, B.1
-
20
-
-
33845212561
-
Foundation for the theory of quasiconformal mappings on the Heisenberg group
-
Korányi, A., and H.M. Reimann: Foundation for the theory of quasiconformal mappings on the Heisenberg group. - Adv. Math. 111, 1995, 1-87.
-
(1995)
Adv. Math.
, vol.111
, pp. 1-87
-
-
Korányi, A.1
Reimann, H.M.2
-
21
-
-
0035652429
-
Differentiability and area formula on stratified Lie groups
-
to appear
-
Magnani, V.: Differentiability and area formula on stratified Lie groups. - Houston J. Math. (to appear).
-
Houston J. Math.
-
-
Magnani, V.1
-
24
-
-
0041862120
-
Balls and metrics defined by vector fields I: Basic properties
-
Nagel, A., E.M. Stein, and S. Wainger: Balls and metrics defined by vector fields I: Basic properties. - Acta Math. 155, 1985, 103-147.
-
(1985)
Acta Math.
, vol.155
, pp. 103-147
-
-
Nagel, A.1
Stein, E.M.2
Wainger, S.3
-
27
-
-
0001773527
-
Métriques de carnot-carathéodory quasiisométries des espaces symétriques de rang un
-
Pansu P.: Métriques de Carnot-Carathéodory quasiisométries des espaces symétriques de rang un. - Ann. Math. 129, 1989, 1-60.
-
(1989)
Ann. Math.
, vol.129
, pp. 1-60
-
-
Pansu, P.1
-
28
-
-
0012490852
-
The large scale geometry of nilpotent Lie groups
-
to appear
-
Pauls, S.D.: The large scale geometry of nilpotent Lie groups. - Comm. Anal. Geom. (to appear).
-
Comm. Anal. Geom.
-
-
Pauls, S.D.1
-
31
-
-
0002011554
-
℘-differentiability on Carnot groups in different topologies and related topics
-
Sobolev Institute Press, Novosibirsk
-
Vodop'yanov, S.K.: ℘-differentiability on Carnot groups in different topologies and related topics. - Proc. Anal. Geom. 603-670, Sobolev Institute Press, Novosibirsk, 2000.
-
(2000)
Proc. Anal. Geom.
, pp. 603-670
-
-
Vodop'Yanov, S.K.1
|