메뉴 건너뛰기




Volumn 5, Issue , 2002, Pages 2575-2577

A study between orthogonal subspace projection and generalized likelihood ratio test in hyperspectral image analysis

Author keywords

Classification; Detection; Generalized likelihood ratio test; Hyperspectral imagery; Orthogonal subspace projection

Indexed keywords

COMPUTER SIMULATION; GAUSSIAN NOISE (ELECTRONIC); INFRARED SPECTROMETERS; MATHEMATICAL MODELS; MATRIX ALGEBRA; MAXIMUM LIKELIHOOD ESTIMATION; PROBABILITY DENSITY FUNCTION; PROJECTION SYSTEMS; SIGNAL DETECTION; SIGNAL TO NOISE RATIO; WHITE NOISE;

EID: 0036402724     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (6)

References (3)
  • 1
    • 0028467206 scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection
    • J. C. Harsanyi and C.-I Chang, "Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection," IEEE Trans. Geoscience and Remote Sensing, vol. 32, pp. 4, pp. 779-785, 1994.
    • (1994) IEEE Trans. Geoscience and Remote Sensing , vol.32
    • Harsanyi, J.C.1    Chang, C.-I.2
  • 3
    • 0034318153 scopus 로고    scopus 로고
    • A generalized orthogonal subspace projection approach to unsupervised multispectral image classification
    • November
    • H. Ren and C.-I Chang, "A generalized orthogonal subspace projection approach to unsupervised multispectral image classification," IEEE Trans. Geoscience and Remote Sensing, vol. 38, no. 6, pp. 2515-2528, November 2000.
    • (2000) IEEE Trans. Geoscience and Remote Sensing , vol.38 , Issue.6 , pp. 2515-2528
    • Ren, H.1    Chang, C.-I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.