-
1
-
-
33751141500
-
Metallic phase with long-range orientational order and no translational symmetry
-
D. Shechtman et al., Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53:1951 (1984).
-
(1984)
Phys. Rev. Lett.
, vol.53
, pp. 1951
-
-
Shechtman, D.1
-
2
-
-
0000188147
-
Comment on "quasicrystals: A new class of ordered structures"
-
V. Elser, Comment on "Quasicrystals: A New Class of Ordered Structures," Phys. Rev. Lett. 54:1730 (1985).
-
(1985)
Phys. Rev. Lett.
, vol.54
, pp. 1730
-
-
Elser, V.1
-
3
-
-
0002754401
-
Random tiling models
-
D. P. Di Vincenzo and P. J. Steinhart, eds. (World Scientific)
-
C. L. Henley, Random tiling models, in Quasicrystals, the State of the Art, D. P. Di Vincenzo and P. J. Steinhart, eds. (World Scientific, 1991), p. 429.
-
(1991)
Quasicrystals, the State of the Art
, pp. 429
-
-
Henley, C.L.1
-
4
-
-
0036500233
-
Total-energy-based prediction of a quasicrystal structure
-
to appear
-
M. Mihalkovic et al., Total-energy-based prediction of a quasicrystal structure, Phys. Rev. B (to appear, 2002).
-
(2002)
Phys. Rev. B
-
-
Mihalkovic, M.1
-
5
-
-
35949013968
-
Quasicrystal equilibrium state
-
M. Widom, K. J. Strandburg, and R. H. Swendsen, Quasicrystal equilibrium state, Phys. Rev. Lett., 58:706 (1987).
-
(1987)
Phys. Rev. Lett.
, vol.58
, pp. 706
-
-
Widom, M.1
Strandburg, K.J.2
Swendsen, R.H.3
-
6
-
-
0001580766
-
The shape of a typical boxed plane partition
-
H. Cohn, M. Larsen, and J. Propp, The shape of a typical boxed plane partition, New York J. of Math. 4:137 (1998); H. Cohn, R. Kenyon, and J. Propp, A variational principle for domino tilings, J. Amer. Math. Soc. 14:297 (2001).
-
(1998)
New York J. of Math.
, vol.4
, pp. 137
-
-
Cohn, H.1
Larsen, M.2
Propp, J.3
-
7
-
-
0035580737
-
A variational principle for domino tilings
-
H. Cohn, M. Larsen, and J. Propp, The shape of a typical boxed plane partition, New York J. of Math. 4:137 (1998); H. Cohn, R. Kenyon, and J. Propp, A variational principle for domino tilings, J. Amer. Math. Soc. 14:297 (2001).
-
(2001)
J. Amer. Math. Soc.
, vol.14
, pp. 297
-
-
Cohn, H.1
Kenyon, R.2
Propp, J.3
-
8
-
-
0029519310
-
Markov chain algorithms for planar lattice structures
-
IEEE
-
M. Luby, D. Randall, and A. Sinclair, Markov chain algorithms for planar lattice structures, Proc. 36th Ann. Symp. on the Foundations of Comp. Sci. (IEEE, 1995), p. 150
-
(1995)
Proc. 36th Ann. Symp. on the Foundations of Comp. Sci.
, pp. 150
-
-
Luby, M.1
Randall, D.2
Sinclair, A.3
-
9
-
-
0007135167
-
Solution of the dimer problem on an hexagonal lattice with boundary
-
V. Elser, Solution of the dimer problem on an hexagonal lattice with boundary, J. Phys. A: Math. Gen. 17:1509 (1984).
-
(1984)
J. Phys. A: Math. Gen.
, vol.17
, pp. 1509
-
-
Elser, V.1
-
10
-
-
18544413014
-
Configurational entropy in random tiling models
-
R. Mosseri, F. Bailly, and C. Sire, Configurational entropy in random tiling models, J. Non-Cryst. Solids 153-154:201 (1993).
-
(1993)
J. Non-Cryst. Solids
, vol.153-154
, pp. 201
-
-
Mosseri, R.1
Bailly, F.2
Sire, C.3
-
11
-
-
0000171242
-
Configurational entropy in octagonal tiling models
-
R. Mosseri and F. Bailly, Configurational entropy in octagonal tiling models, Int. J. Mod. Phys. B 6&7:1427 (1993).
-
(1993)
Int. J. Mod. Phys. B
, vol.6-7
, pp. 1427
-
-
Mosseri, R.1
Bailly, F.2
-
12
-
-
0031138554
-
Configurational entropy of codimension-one tilings and directed membranes
-
N. Destainville, R. Mosseri, and F. Bailly, Configurational entropy of codimension-one tilings and directed membranes, J. Stat. Phys. 87:697 (1997).
-
(1997)
J. Stat. Phys.
, vol.87
, pp. 697
-
-
Destainville, N.1
Mosseri, R.2
Bailly, F.3
-
13
-
-
0035530275
-
Fixed-boundary octagonal random tilings: A combinatorial approach
-
N. Destainville, R. Mosseri, and F. Bailly, Fixed-boundary octagonal random tilings: A combinatorial approach, J. Stat. Phys. 102:147 (2001).
-
(2001)
J. Stat. Phys.
, vol.102
, pp. 147
-
-
Destainville, N.1
Mosseri, R.2
Bailly, F.3
-
14
-
-
36749109757
-
Boundary effects in the dimer problem on a non-bravais lattice
-
D. Grensing and G. Grensing, Boundary effects in the dimer problem on a non-bravais lattice, J. Math. Phys. 24:620 (1983); D. Grensing, I. Carlsen, and H. Chr. Zapp, Some exact results for the dimer problem on plane lattices with nonstandard boundaries, Phil. Mag. A 41:777 (1980)
-
(1983)
J. Math. Phys.
, vol.24
, pp. 620
-
-
Grensing, D.1
Grensing, G.2
-
15
-
-
0019016674
-
Zapp, Some exact results for the dimer problem on plane lattices with nonstandard boundaries
-
D. Grensing and G. Grensing, Boundary effects in the dimer problem on a non-bravais lattice, J. Math Phys. 24:620 (1983); D. Grensing, I. Carlsen, and H. Chr. Zapp, Some exact results for the dimer problem on plane lattices with nonstandard boundaries, Phil. Mag. A 41:777 (1980)
-
(1980)
Phil. Mag. A
, vol.41
, pp. 777
-
-
Grensing, D.1
Carlsen, I.2
Chr, H.3
-
16
-
-
0040575578
-
Entropy and boundary conditions in random rhombus tilings
-
N. Destainville, Entropy and boundary conditions in random rhombus tilings, J. Phys. A: Math. Gen 31:6123 (1998).
-
(1998)
J. Phys. A: Math. Gen.
, vol.31
, pp. 6123
-
-
Destainville, N.1
-
17
-
-
0141843016
-
An n-dimensional generalization of the rhombus tiling
-
J. Linde, C. Moore, and M.G. Nordahl, An n-dimensional generalization of the rhombus tiling, in Proceedings of the 1st International conference on Discrete Models: Combinatorics, Computation, and Geometry (DM-CCG'01), M. Morvan, R. Cori, J. Mazoyer and R. Mosseri, eds., Discrete Math. and Theo. Comp. Sc. AA:23 (2001).
-
Proceedings of the 1st International Conference on Discrete Models: Combinatorics, Computation, and Geometry (DM-CCG'01)
-
-
Linde, J.1
Moore, C.2
Nordahl, M.G.3
-
18
-
-
0141731647
-
-
J. Linde, C. Moore, and M.G. Nordahl, An n-dimensional generalization of the rhombus tiling, in Proceedings of the 1st International conference on Discrete Models: Combinatorics, Computation, and Geometry (DM-CCG'01), M. Morvan, R. Cori, J. Mazoyer and R. Mosseri, eds., Discrete Math. and Theo. Comp. Sc. AA:23 (2001).
-
(2001)
Discrete Math. and Theo. Comp. Sc.
, vol.AA
, pp. 23
-
-
Morvan, M.1
Cori, R.2
Mazoyer, J.3
Mosseri, R.4
-
20
-
-
0141508346
-
-
Unpublished
-
J. Propp (Unpublished, 2001)
-
(2001)
-
-
Propp, J.1
-
21
-
-
33744671712
-
Entropy of a three-dimensional random-tiling quasicrystal
-
K. J. Strandburg, Entropy of a three-dimensional random-tiling quasicrystal, Phys. Rev. B 44:4644 (1991).
-
(1991)
Phys. Rev. B
, vol.44
, pp. 4644
-
-
Strandburg, K.J.1
-
25
-
-
0141731645
-
-
note
-
Recall that the configurational entropy per tile is the logarithm of the number of configurations, divided by the number of tiles.
-
-
-
-
26
-
-
0542362070
-
Algebraic theory of Penrose's non-periodic tilings of the plane
-
N. G. de Bruijn, Algebraic theory of Penrose's non-periodic tilings of the plane, Ned. Akad. Wetensch. Proc. A84:39 (1981); Dualization of multigrids, J. Phys. France 47:C3-9 (1986).
-
(1981)
Ned. Akad. Wetensch. Proc.
, vol.A84
, pp. 39
-
-
De Bruijn, N.G.1
-
27
-
-
0542362070
-
Dualization of multigrids
-
N. G. de Bruijn, Algebraic theory of Penrose's non-periodic tilings of the plane, Ned. Akad. Wetensch. Proc. A84:39 (1981); Dualization of multigrids, J. Phys. France 47:C3-9 (1986).
-
(1986)
J. Phys. France
, vol.47
-
-
-
28
-
-
0141731646
-
-
note
-
To make the "free-boundary" entropy well defined, we need to add some weak constraint to ensure the tiling remains connected and reasonably compact. We presume that the free-boundary entropy equals that for strain-free periodic boundary conditions.
-
-
-
-
29
-
-
0000083252
-
Bethe ansatz solution of the square-triangle random tiling model
-
M. Widom, Bethe ansatz solution of the square-triangle random tiling model, Phys. Rev. Lett. 70:2094 (1993); P. Kalugin, Square-triangle random-tiling model in the thermodynamic limit, J. Phys. A 27:3599 (1994); J. de Gier and B. Nienhuis, Exact solution of an octagonal random tiling model, Phys. Rev. Lett. 76:2918 (1996); J. de Gier and B. Nienhuis, Bethe ansatz solution of a decagonal rectangle-triangle random tiling, J. Phys. A 31:2141 (1998);
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 2094
-
-
Widom, M.1
-
30
-
-
21344488272
-
Square-triangle random-tiling model in the thermodynamic limit
-
M. Widom, Bethe ansatz solution of the square-triangle random tiling model, Phys. Rev. Lett. 70:2094 (1993); P. Kalugin, Square-triangle random-tiling model in the thermodynamic limit, J. Phys. A 27:3599 (1994); J. de Gier and B. Nienhuis, Exact solution of an octagonal random tiling model, Phys. Rev. Lett. 76:2918 (1996); J. de Gier and B. Nienhuis, Bethe ansatz solution of a decagonal rectangle-triangle random tiling, J. Phys. A 31:2141 (1998);
-
(1994)
J. Phys. A
, vol.27
, pp. 3599
-
-
Kalugin, P.1
-
31
-
-
4243271450
-
Exact solution of an octagonal random tiling model
-
M. Widom, Bethe ansatz solution of the square-triangle random tiling model, Phys. Rev. Lett. 70:2094 (1993); P. Kalugin, Square-triangle random-tiling model in the thermodynamic limit, J. Phys. A 27:3599 (1994); J. de Gier and B. Nienhuis, Exact solution of an octagonal random tiling model, Phys. Rev. Lett. 76:2918 (1996); J. de Gier and B. Nienhuis, Bethe ansatz solution of a decagonal rectangle-triangle random tiling, J. Phys. A 31:2141 (1998);
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 2918
-
-
De Gier, J.1
Nienhuis, B.2
-
32
-
-
0032489179
-
Bethe ansatz solution of a decagonal rectangle-triangle random tiling
-
M. Widom, Bethe ansatz solution of the square-triangle random tiling model, Phys. Rev. Lett. 70:2094 (1993); P. Kalugin, Square-triangle random-tiling model in the thermodynamic limit, J. Phys. A 27:3599 (1994); J. de Gier and B. Nienhuis, Exact solution of an octagonal random tiling model, Phys. Rev. Lett. 76:2918 (1996); J. de Gier and B. Nienhuis, Bethe ansatz solution of a decagonal rectangle-triangle random tiling, J. Phys. A 31:2141 (1998);
-
(1998)
J. Phys. A
, vol.31
, pp. 2141
-
-
De Gier, J.1
Nienhuis, B.2
-
33
-
-
0000826731
-
Phason elasticity in entropic quasicrystals
-
K. J. Strandburg, L.-H. Tang, and M. V. Jaric, Phason elasticity in entropic quasicrystals, Phys. Rev. Lett. 63:314 (1989); L.-H. Tang, Random-tiling quasicrystal in three dimensions, Phys. Rev. Lett. 64:2390 (1990) ; D. Joseph and M. Baake, Boundary conditions, entropy and the signature of random tilings, J. Phys. A 29:6709 (1996); M. Oxborrow and C. L. Henley, Random square-triangle tilings: A model for twelvefold-symmetric quasicrystals, Phys. Rev. B 48:6966 (1993).
-
(1989)
Phys. Rev. Lett.
, vol.63
, pp. 314
-
-
Strandburg, K.J.1
Tang, L.-H.2
Jaric, M.V.3
-
34
-
-
0000917592
-
Random-tiling quasicrystal in three dimensions
-
K. J. Strandburg, L.-H. Tang, and M. V. Jaric, Phason elasticity in entropic quasicrystals, Phys. Rev. Lett. 63:314 (1989); L.-H. Tang, Random-tiling quasicrystal in three dimensions, Phys. Rev. Lett. 64:2390 (1990) ; D. Joseph and M. Baake, Boundary conditions, entropy and the signature of random tilings, J. Phys. A 29:6709 (1996); M. Oxborrow and C. L. Henley, Random square-triangle tilings: A model for twelvefold-symmetric quasicrystals, Phys. Rev. B 48:6966 (1993).
-
(1990)
Phys. Rev. Lett.
, vol.64
, pp. 2390
-
-
Tang, L.-H.1
-
35
-
-
0030509123
-
Boundary conditions, entropy and the signature of random tilings
-
K. J. Strandburg, L.-H. Tang, and M. V. Jaric, Phason elasticity in entropic quasicrystals, Phys. Rev. Lett. 63:314 (1989); L.-H. Tang, Random-tiling quasicrystal in three dimensions, Phys. Rev. Lett. 64:2390 (1990) ; D. Joseph and M. Baake, Boundary conditions, entropy and the signature of random tilings, J. Phys. A 29:6709 (1996); M. Oxborrow and C. L. Henley, Random square-triangle tilings: A model for twelvefold-symmetric quasicrystals, Phys. Rev. B 48:6966 (1993).
-
(1996)
J. Phys. A
, vol.29
, pp. 6709
-
-
Joseph, D.1
Baake, M.2
-
36
-
-
0001539528
-
Random square-triangle tilings: A model for twelvefold-symmetric quasicrystals
-
K. J. Strandburg, L.-H. Tang, and M. V. Jaric, Phason elasticity in entropic quasicrystals, Phys. Rev. Lett. 63:314 (1989); L.-H. Tang, Random-tiling quasicrystal in three dimensions, Phys. Rev. Lett. 64:2390 (1990) ; D. Joseph and M. Baake, Boundary conditions, entropy and the signature of random tilings, J. Phys. A 29:6709 (1996); M. Oxborrow and C. L. Henley, Random square-triangle tilings: A model for twelvefold-symmetric quasicrystals, Phys. Rev. B 48:6966 (1993).
-
(1993)
Phys. Rev. B
, vol.48
, pp. 6966
-
-
Oxborrow, M.1
Henley, C.L.2
-
37
-
-
0004803315
-
Finite-temperature elasticity phase transition in decagonal quasicrystals
-
H.-C. Jeong and P. J. Steinhardt, Finite-temperature elasticity phase transition in decagonal quasicrystals, Phys. Rev. B 48:9394 (1993)
-
(1993)
Phys. Rev. B
, vol.48
, pp. 9394
-
-
Jeong, H.-C.1
Steinhardt, P.J.2
-
38
-
-
0009904379
-
Thermodynamics of random tiling quasicrystals
-
C. Janot and R. Mosseri, eds. (World Scientific)
-
F. Gähler, Thermodynamics of random tiling quasicrystals, in Proceedings of the 5th International Conference on Quasicrystals, C. Janot and R. Mosseri, eds. (World Scientific, 1995), p. 236.
-
(1995)
Proceedings of the 5th International Conference on Quasicrystals
, pp. 236
-
-
Gähler, F.1
-
39
-
-
0141508304
-
A transfer-matrix Monte Carlo study of random Penrose tilings
-
L. J. Shaw and C. L. Henley, A transfer-matrix Monte Carlo study of random Penrose tilings, J. Phys. A 24:4129 (1991).
-
(1991)
J. Phys. A
, vol.24
, pp. 4129
-
-
Shaw, L.J.1
Henley, C.L.2
-
40
-
-
0000897343
-
Transfer-matrix analysis of a two-dimensional quasicrystal
-
M. Widom, D. P. Deng, and C. L. Henley, Transfer-matrix analysis of a two-dimensional quasicrystal, Phys. Rev. Lett. 63:310 (1989); W. Li, H. Park, and M. Widom, Phase diagram of a random tiling quasicrystal, J. Stat. Phys. 66: 1 (1992); M. E. J. Newman and C. L. Henley, Phason elasticity of a three-dimensional quasicrystal: A transfer matrix study, Phys. Rev. B 52:6386 (1995)
-
(1989)
Phys. Rev. Lett.
, vol.63
, pp. 310
-
-
Widom, M.1
Deng, D.P.2
Henley, C.L.3
-
41
-
-
0001173696
-
Phase diagram of a random tiling quasicrystal
-
M. Widom, D. P. Deng, and C. L. Henley, Transfer-matrix analysis of a two-dimensional quasicrystal, Phys. Rev. Lett. 63:310 (1989); W. Li, H. Park, and M. Widom, Phase diagram of a random tiling quasicrystal, J. Stat. Phys. 66: 1 (1992); M. E. J. Newman and C. L. Henley, Phason elasticity of a three-dimensional quasicrystal: A transfer matrix study, Phys. Rev. B 52:6386 (1995)
-
(1992)
J. Stat. Phys.
, vol.66
, pp. 1
-
-
Li, W.1
Park, H.2
Widom, M.3
-
42
-
-
0000028806
-
Phason elasticity of a three-dimensional quasicrystal: A transfer matrix study
-
M. Widom, D. P. Deng, and C. L. Henley, Transfer-matrix analysis of a two-dimensional quasicrystal, Phys. Rev. Lett. 63:310 (1989); W. Li, H. Park, and M. Widom, Phase diagram of a random tiling quasicrystal, J. Stat. Phys. 66: 1 (1992); M. E. J. Newman and C. L. Henley, Phason elasticity of a three-dimensional quasicrystal: A transfer matrix study, Phys. Rev. B 52:6386 (1995)
-
(1995)
Phys. Rev. B
, vol.52
, pp. 6386
-
-
Newman, M.E.J.1
Henley, C.L.2
-
43
-
-
17944393733
-
Transition matrix Monte Carlo reweighting and dynamics
-
J. S. Wang, T. K. Tay, and R. H. Swendsen, Transition matrix Monte Carlo reweighting and dynamics, Phys. Rev. Lett. 82:476 (1999); R. H. Swendsen, B. Diggs, J.-S. Wang, S.-T. Li, and J. B. Kadane, Transition matrix Monte Carlo, Int. J. Mod. Phys. C 10:1563 (1999);
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 476
-
-
Wang, J.S.1
Tay, T.K.2
Swendsen, R.H.3
-
44
-
-
0002404429
-
Transition matrix Monte Carlo
-
J. S. Wang, T. K. Tay, and R. H. Swendsen, Transition matrix Monte Carlo reweighting and dynamics, Phys. Rev. Lett. 82:476 (1999); R. H. Swendsen, B. Diggs, J.-S. Wang, S.-T. Li, and J. B. Kadane, Transition matrix Monte Carlo, Int. J. Mod. Phys. C 10:1563 (1999);
-
(1999)
Int. J. Mod. Phys. C
, vol.10
, pp. 1563
-
-
Swendsen, R.H.1
Diggs, B.2
Wang, J.-S.3
Li, S.-T.4
Kadane, J.B.5
-
45
-
-
0141731642
-
-
note
-
The transition matrix Monte Carlo method(29) differs from the transfer matrix Monte Carlo method.(27) The former constructs a time series of different tilings, each of identical compact finite size, while the latter constructs a single highly elongated structure whose length grows proportionally to the duration of the simulation.
-
-
-
-
46
-
-
0141619649
-
-
note
-
max is unique provided the free-boundary entropy is a concave function of the phason gradient.
-
-
-
|