-
1
-
-
0001563645
-
Saddle points and multiple solutions of differential equations
-
H. Amann, ‘Saddle points and multiple solutions of differential equations’, Math. Z. 169 (1979) 127–166.
-
(1979)
Math. Z.
, vol.169
, pp. 127-166
-
-
Amann, H.1
-
2
-
-
0001727302
-
Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations
-
H. Amann and E. Zehnder, ‘Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations’, Ann. Scuola Norm. Sup. Pisa 7 (1980) 539–603.
-
(1980)
Ann. Scuola Norm. Sup. Pisa
, vol.7
, pp. 539-603
-
-
Amann, H.1
Zehnder, E.2
-
3
-
-
34548350707
-
Dual variational methods in critical points theory and applications
-
A. Ambrosetti and P. Rabinowitz, ‘Dual variational methods in critical points theory and applications’, J. Funct. Anal. 14 (1973) 349–381.
-
(1973)
J. Funct. Anal.
, vol.14
, pp. 349-381
-
-
Ambrosetti, A.1
Rabinowitz, P.2
-
5
-
-
0009179578
-
Abstract critical theorems and applications to some nonlinear problems with “strong” resonance at infinity
-
P. Bartolo, V. Benci and D. Fortunato, ‘Abstract critical theorems and applications to some nonlinear problems with “strong” resonance at infinity’, Nonlinear Anal. 7 (1983) 981–1012.
-
(1983)
Nonlinear Anal.
, vol.7
, pp. 981-1012
-
-
Bartolo, P.1
Benci, V.2
Fortunato, D.3
-
6
-
-
34250273736
-
Critical points theory and the number of solutions of nonlinear Dirichlet problem
-
A. Casro and A. C. Lazer, ‘Critical points theory and the number of solutions of nonlinear Dirichlet problem’, Ann. Mat. Pura Appl. 120 (1979) 114–137.
-
(1979)
Ann. Mat. Pura Appl.
, vol.120
, pp. 114-137
-
-
Casro, A.1
Lazer, A.C.2
-
7
-
-
0000666755
-
Un criterio de esistenza per i parti critici su varietà ilimitate
-
G. Cerami, ‘Un criterio de esistenza per i parti critici su varietà ilimitate’, Rc. Ist. Lomb. Sci. Lett. 112 (1978) 332–336.
-
(1978)
Rc. Ist. Lomb. Sci. Lett.
, vol.112
, pp. 332-336
-
-
Cerami, G.1
-
8
-
-
84980139669
-
Solutions of asymptotically linear operator equations via Morse theory
-
K. C. Chang, ‘Solutions of asymptotically linear operator equations via Morse theory’, Comm. Pure Appl. Math. 34 (1981) 693–712.
-
(1981)
Comm. Pure Appl. Math.
, vol.34
, pp. 693-712
-
-
Chang, K.C.1
-
9
-
-
0000224442
-
Existence results for perturbations of the p-Laplacian
-
D. G. Costa and C. A. Magalhães, ‘Existence results for perturbations of the p-Laplacian’, Nonlinear Anal. 24 (1995) 409–418.
-
(1995)
Nonlinear Anal.
, vol.24
, pp. 409-418
-
-
Costa, D.G.1
Magalhães, C.A.2
-
10
-
-
0000408704
-
Nonlinear perturbations of linear elliptic and parabolic problems at resonance: existence of multiple solutions
-
P. Hess, ‘Nonlinear perturbations of linear elliptic and parabolic problems at resonance: existence of multiple solutions’, Ann. Scuola Norm. Sup. Pisa 5 (1978) 527–537.
-
(1978)
Ann. Scuola Norm. Sup. Pisa
, vol.5
, pp. 527-537
-
-
Hess, P.1
-
11
-
-
0000851112
-
Nonlinear perturbation of linear elliptic boundary value problems at resonance
-
E. A. Landsman and A. C. Lazer, ‘Nonlinear perturbation of linear elliptic boundary value problems at resonance’, J. Math. Mech. 19 (1970) 609–623.
-
(1970)
J. Math. Mech.
, vol.19
, pp. 609-623
-
-
Landsman, E.A.1
Lazer, A.C.2
-
12
-
-
21844513524
-
Stability in obstacle problems
-
G. B. Li and O. Martio, ‘Stability in obstacle problems’, Math. Scand. 75 (1994) 87–100.
-
(1994)
Math. Scand.
, vol.75
, pp. 87-100
-
-
Li, G.B.1
Martio, O.2
-
13
-
-
0034826287
-
Asymptotically “linear” Dirichlet problem for p-Laplacian
-
G. B. Li and H. S. Zhou, ‘Asymptotically “linear” Dirichlet problem for p-Laplacian’, Nonlinear Anal. 43 (2001) 1043–1055.
-
(2001)
Nonlinear Anal.
, vol.43
, pp. 1043-1055
-
-
Li, G.B.1
Zhou, H.S.2
-
14
-
-
33846692240
-
Dirichlet problem of p-Laplacian with nonlinear term f(x,u) ~ up-1 at infinity
-
ed. H. Brezis, S. J. Li et al, International Press, to appear
-
G. B. Li and H. S. Zhou, ‘Dirichlet problem of p-Laplacian with nonlinear term f(x,u) ~ up-1 at infinity’, Morse theory, minimax theory and their applications to nonlinear partial differential equations (ed. H. Brezis, S. J. Li et al, International Press, to appear).
-
Morse theory, minimax theory and their applications to nonlinear partial differential equations
-
-
Li, G.B.1
Zhou, H.S.2
-
15
-
-
0004029212
-
On a nonlinear eigenvalue problem
-
Jyväskylä, 1994 ed. T. Kilpeläinen
-
P. Lindqvist, ‘On a nonlinear eigenvalue problem’, Proceedings of Fall School in Analysis, Jyväskylä, 1994, 1995, 33–54 (ed. T. Kilpeläinen).
-
(1995)
Proceedings of Fall School in Analysis
, pp. 33-54
-
-
Lindqvist, P.1
-
16
-
-
0009932209
-
Nontrivial critical points for the functional ∫Ω F(x, u, Du)dx
-
Chinese
-
R. T. Shen and X. K. Guo, ‘Nontrivial critical points for the functional ∫Ω F(x, u, Du)dx’, Acta Math. Sci. 10 (1990) 249–258 (Chinese).
-
(1990)
Acta Math. Sci.
, vol.10
, pp. 249-258
-
-
Shen, R.T.1
Guo, X.K.2
-
17
-
-
0002527268
-
Self-trapping of an electromagnetic field and bifurcation from the essential spectrum
-
C. A. Stuart, ‘Self-trapping of an electromagnetic field and bifurcation from the essential spectrum’, Arch. Rational Mech. Anal. 113 (1991) 65–96.
-
(1991)
Arch. Rational Mech. Anal.
, vol.113
, pp. 65-96
-
-
Stuart, C.A.1
-
18
-
-
0005119588
-
Magnetic field wave equations for TM-modes in nonlinear optical waveguides
-
ed. Caristi and Mitidieri, Marcel Dekker
-
C. A. Stuart, ‘Magnetic field wave equations for TM-modes in nonlinear optical waveguides’, Reaction diffusion systems (ed. Caristi and Mitidieri, Marcel Dekker, 1997) 377–400.
-
(1997)
Reaction diffusion systems
, pp. 377-400
-
-
Stuart, C.A.1
-
19
-
-
0033473157
-
Applying the mountain pass theorem to an asymptotically linear elliptic equation on RN
-
C. A. Stuart and H. S. Zhou, ‘Applying the mountain pass theorem to an asymptotically linear elliptic equation on RN’, Comm. Partial Differential Equations 24 (1999) 1731–1758.
-
(1999)
Comm. Partial Differential Equations
, vol.24
, pp. 1731-1758
-
-
Stuart, C.A.1
Zhou, H.S.2
|