메뉴 건너뛰기




Volumn 114, Issue 3, 2002, Pages 217-230

Linkage analysis of quantitative trait loci in multiple line crosses

Author keywords

Bayesian analysis; Markov chain Monte Carlo; Metropolis Hastings algorithm; Multiple line cross; Quantitative trait loci; Reversible jump algorithm

Indexed keywords

ALGORITHM; ARTICLE; BAYES THEOREM; BIOLOGICAL MODEL; CHROMOSOME MAP; COMPUTER SIMULATION; CROSS BREEDING; GENETIC MARKER; METHODOLOGY; QUANTITATIVE TRAIT LOCUS; STATISTICAL ANALYSIS;

EID: 0036335599     PISSN: 00166707     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1016296225065     Document Type: Article
Times cited : (16)

References (35)
  • 3
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 6
    • 33646942472 scopus 로고
    • A simple regression method for mapping quantitative trait in line crosses using flanking markers
    • (1992) Heredity , vol.69 , pp. 315-324
    • Haley, C.S.1    Knott, S.A.2
  • 8
    • 0030833349 scopus 로고    scopus 로고
    • Markov chain Monte Carlo segregation and linkage analysis for oligogenic models
    • (1997) Am. J. Hum. Genet. , vol.61 , pp. 784-760
    • Heath, S.C.1
  • 9
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 10
    • 0028348164 scopus 로고
    • High resolution of quantitative traits into multiple loci via interval mapping
    • (1994) Genetics , vol.136 , pp. 1447-1455
    • Jansen, R.C.1    Stam, P.2
  • 14
    • 0034046419 scopus 로고    scopus 로고
    • A general mixture model approach for mapping quantitative trait loci from diverse cross designs involving multiple inbred lines
    • (2000) Genet. Res. Camb. , vol.75 , pp. 345-355
    • Liu, Y.1    Zeng, Z.-B.2
  • 15
    • 0033759771 scopus 로고    scopus 로고
    • Performance of Markov chain Monte Carlo approaches for mapping genes in oligogenic models with an unknown number of loci
    • (2000) Am. J. Hum. Genet. , vol.67 , pp. 1232-1250
    • Lee, J.K.1    Thomas, D.C.2
  • 16
    • 0030021039 scopus 로고    scopus 로고
    • Power of tests for quantitative trait loci detection using full-sib families in different schemes
    • (1996) Heredity , vol.76 , pp. 156-165
    • Muranty, H.1
  • 22
  • 23
  • 24
  • 25
    • 0029945706 scopus 로고    scopus 로고
    • Descent graphs in pedigree analysis: Applications to haplotyping, location scores, and marker-sharing statistics
    • (1996) Am. J. Hum. Genet. , vol.58 , pp. 1323-1337
    • Sobel, E.1    Lange, K.2
  • 27
    • 0030914024 scopus 로고    scopus 로고
    • Mapping linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms
    • (1997) Genetics , vol.146 , pp. 735-743
    • Uimari, P.1    Hoeschele, I.2
  • 29
    • 0029442376 scopus 로고
    • A comment on the simple regression method for interval mapping
    • (1995) Genetics , vol.141 , pp. 1657-1659
    • Xu, S.1
  • 30
    • 0031932625 scopus 로고    scopus 로고
    • Mapping quantitative trait loci using multiple families of line crosses
    • (1998) Genetics , vol.148 , pp. 517-524
    • Xu, S.1
  • 32
    • 0033927715 scopus 로고    scopus 로고
    • Bayesian mapping of quantitative trait loci for complex binary traits
    • (2000) Genetics , vol.155 , pp. 1391-1403
    • Yi, N.1    Xu, S.2
  • 33
    • 0033832927 scopus 로고    scopus 로고
    • Bayesian mapping of quantitative trait loci under the identity-by-descent-based variance component model
    • (2000) Genetics , vol.156 , pp. 411-422
    • Yi, N.1    Xu, S.2
  • 34
    • 0035048242 scopus 로고    scopus 로고
    • Bayesian mapping of quantitative trait loci under complicated mating designs
    • (2001) Genetics , vol.157 , pp. 1759-1771
    • Yi, N.1    Xu, S.2
  • 35
    • 0028224156 scopus 로고
    • Precision mapping of quantitative trait loci
    • (1994) Genetics , vol.136 , pp. 1457-1468
    • Zeng, Z.-B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.