메뉴 건너뛰기




Volumn 23, Issue 3, 2002, Pages 866-890

A Lie algebraic approach to numerical integration of stochastic differential equations

Author keywords

Composition methods (operator splitting method); Lie algebra; Mathematical finance; Stochastic differential equations; Stochastic Hamiltonian dynamical systems; Stochastic nonlinear system

Indexed keywords

ALGEBRA; APPROXIMATION THEORY; COMPUTER SIMULATION; DIFFERENTIAL EQUATIONS; HAMILTONIANS; INTEGRATION; NONLINEAR EQUATIONS; NONLINEAR SYSTEMS; RANDOM PROCESSES;

EID: 0036289720     PISSN: 10648275     EISSN: None     Source Type: Journal    
DOI: 10.1137/S106482750037024X     Document Type: Article
Times cited : (43)

References (26)
  • 4
    • 0039027595 scopus 로고    scopus 로고
    • High strong methods for non-commutative stochastic ordinary differential equation systems and the magnus formula
    • (1999) Phys. D , vol.133 , pp. 34-48
    • Burrage, K.1    Burrage, P.M.2
  • 13
    • 0009565820 scopus 로고
    • Explicit energy conservative difference schemes for nonlinear dynamical systems with at most quartic potentials
    • (1994) Phys. Lett. A , vol.191 , pp. 373-378
    • Ishimori, Y.1
  • 16
    • 0009596551 scopus 로고
    • On the representation of solutions of stochastic differential equations
    • Springer-Verlag, Berlin
    • (1980) Lecture Notes in Math. , vol.784 , pp. 282-304
    • Kunita, H.1
  • 24
    • 4244036883 scopus 로고
    • General theory of higher-order exponential product formulas
    • (1990) Phys. Lett. A , vol.146 , pp. 319-324
    • Suzuki, M.1
  • 25


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.