메뉴 건너뛰기




Volumn 5, Issue 3, 2002, Pages 289-304

Pricing in agent economies using multi-agent Q-learning

Author keywords

Adaptive multi agent systems; Agent economies; Machine learning; Reinforcement learning

Indexed keywords

AGENT ECONOMIES;

EID: 0036274424     PISSN: 13872532     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1015504423309     Document Type: Article
Times cited : (119)

References (17)
  • 1
    • 85156187730 scopus 로고    scopus 로고
    • Improving elevator performance using reinforcement learning
    • D. Touretzky et al. (eds.), MIT Press
    • R. H. Crites and A. G. Barto, "Improving elevator performance using reinforcement learning," in D. Touretzky et al. (eds.), Advances in Neural Information Processing Systems, MIT Press, 1996, vol. 8, pp. 1017-1023.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 1017-1023
    • Crites, R.H.1    Barto, A.G.2
  • 4
    • 0000929496 scopus 로고    scopus 로고
    • Multiagent reinforcement learning: Theoretical framework and an algorithm
    • J. Hu and M. P. Wellman, "Multiagent reinforcement learning: theoretical framework and an algorithm," Proc. ICML-98, 1998.
    • (1998) Proc. ICML-98
    • Hu, J.1    Wellman, M.P.2
  • 5
    • 0041893011 scopus 로고    scopus 로고
    • Price-war dynamics in a free-market economy of software agents
    • Los Angeles
    • J. O. Kephart, J. E. Hanson and, J. Sairamesh, "Price-war dynamics in a free-market economy of software agents," in Proc. ALIFE-VI, Los Angeles, 1998.
    • (1998) Proc. ALIFE-VI
    • Kephart, J.O.1    Hanson, J.E.2    Sairamesh, J.3
  • 7
    • 85149834820 scopus 로고
    • Markov games as a framework for multi-agent reinforcement learning
    • Morgan Kaufmann
    • M. L. Littman, "Markov games as a framework for multi-agent reinforcement learning," Proc. Eleventh Int. Conf. Machine Learning, Morgan Kaufmann, 1994, pp. 157-163.
    • (1994) Proc. Eleventh Int. Conf. Machine Learning , pp. 157-163
    • Littman, M.L.1
  • 9
    • 0010623451 scopus 로고
    • On multiagent Q-Learning in a semi-competitive domain
    • Workshop on Adaptation and Learning in Multiagent Systems, Montreal, Canada
    • T. W. Sandholm and R. H. Crites, "On multiagent Q-Learning in a semi-competitive domain," 14th Int. Joint Conf. Artificial Intelligence (IJCAI-95) Workshop on Adaptation and Learning in Multiagent Systems, Montreal, Canada, 1995, pp. 71-77.
    • (1995) 14th Int. Joint Conf. Artificial Intelligence (IJCAI-95) , pp. 71-77
    • Sandholm, T.W.1    Crites, R.H.2
  • 10
    • 84962045565 scopus 로고    scopus 로고
    • Multi-agent Q-learning and regression trees for automated pricing decisions
    • to appear
    • M. Sridharan and G. Tesauro, "Multi-agent Q-learning and regression trees for automated pricing decisions," Proc. ICML-00, to appear, 2000.
    • (2000) Proc. ICML-00
    • Sridharan, M.1    Tesauro, G.2
  • 11
    • 0029276036 scopus 로고
    • Temporal difference learning and TD-Gammon
    • G. Tesauro, "Temporal difference learning and TD-Gammon," Comm. of the ACM, vol. 38, no. 3, pp. 58-67, 1995.
    • (1995) Comm. of the ACM , vol.38 , Issue.3 , pp. 58-67
    • Tesauro, G.1
  • 13
    • 0141771048 scopus 로고    scopus 로고
    • Foresight-based pricing algorithms in agent economies
    • to appear
    • G. J. Tesauro and J. O. Kephart, "Foresight-based pricing algorithms in agent economies," Decision Support Sciences, to appear, 1999.
    • (1999) Decision Support Sciences
    • Tesauro, G.J.1    Kephart, J.O.2
  • 17
    • 85156225449 scopus 로고    scopus 로고
    • High-performance job-shop scheduling with a time-delay TD(λ) network
    • D. Touretzky et al. (eds.), am Press
    • W. Zhang and T. G. Dietterich, "High-performance job-shop scheduling with a time-delay TD(λ) network." in D. Touretzky et al. (eds.), Advances in Neural Information Processing Systems, am Press, 1996, vol. 8, pp. 1024-1030.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 1024-1030
    • Zhang, W.1    Dietterich, T.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.