-
1
-
-
84968516183
-
A general chain rule for distributional derivatives
-
Ambrosio, L.; Maso, G. D. A general chain rule for distributional derivatives. Proc. Amer. Math. Soc. 108 (1990), no. 3, 691-702.
-
(1990)
Proc. Amer. Math. Soc.
, vol.108
, Issue.3
, pp. 691-702
-
-
Ambrosio, L.1
Maso, G.D.2
-
3
-
-
0001363761
-
The approximation problem for Sobolev maps between two manifolds
-
Bethuel, F. The approximation problem for Sobolev maps between two manifolds. Acta Math. 167 (1991), no. 3-4, 153-206.
-
(1991)
Acta Math.
, vol.167
, Issue.3-4
, pp. 153-206
-
-
Bethuel, F.1
-
4
-
-
0002547774
-
Density of smooth functions between two manifolds in Sobolev spaces
-
Bethuel, F.; Zheng, X. M. Density of smooth functions between two manifolds in Sobolev spaces. J. Funct. Anal. 80 (1988), no. 1, 60-75.
-
(1988)
J. Funct. Anal.
, vol.80
, Issue.1
, pp. 60-75
-
-
Bethuel, F.1
Zheng, X.M.2
-
5
-
-
0001751477
-
1) qui peuvent être approchées par des fonctions régulières
-
1) qui peuvent être approchées par des fonctions régulières. C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 7, 553-557.
-
(1990)
C. R. Acad. Sci. Paris Sér. i Math.
, vol.310
, Issue.7
, pp. 553-557
-
-
Demengel, F.1
-
6
-
-
0003605883
-
-
Springer, Berlin
-
Giaquinta, M.; Modica, G.; Souček, J. Cartesian currents in the calculus of variations. I. Cartesian currents. Springer, Berlin, 1998.
-
(1998)
Cartesian Currents in the Calculus of Variations. I. Cartesian Currents
, vol.1
-
-
Giaquinta, M.1
Modica, G.2
Souček, J.3
-
7
-
-
38149146577
-
Approximation of Sobolev mappings
-
Hajlasz, P. Approximation of Sobolev mappings. Nonlinear Anal 22 (1994), no. 12, 1579-1591.
-
(1994)
Nonlinear Anal
, vol.22
, Issue.12
, pp. 1579-1591
-
-
Hajlasz, P.1
-
8
-
-
0035535889
-
Topology of Sobolev mappings
-
Hang, F. B.; Lin, F. H. Topology of Sobolev mappings. Math. Res. Lett. 8 (2001), no. 3, 321-330.
-
(2001)
Math. Res. Lett.
, vol.8
, Issue.3
, pp. 321-330
-
-
Hang, F.B.1
Lin, F.H.2
-
11
-
-
12844253040
-
The Lipschitz continuity of the distance function to the cut locus
-
Itoh, J. I.; Tanaka, M. The Lipschitz continuity of the distance function to the cut locus. Trans. Amer. Math. Soc. 353 (2001), no. 1, 21-40.
-
(2001)
Trans. Amer. Math. Soc.
, vol.353
, Issue.1
, pp. 21-40
-
-
Itoh, J.I.1
Tanaka, M.2
-
12
-
-
0001496464
-
Every superposition operator mapping one Sobolev space into another is continuous
-
Marcus, M.; Mizel, V. J. Every superposition operator mapping one Sobolev space into another is continuous. J. Fund. Anal. 33 (1979), no. 2, 217-229.
-
(1979)
J. Fund. Anal.
, vol.33
, Issue.2
, pp. 217-229
-
-
Marcus, M.1
Mizel, V.J.2
-
13
-
-
0010730793
-
Complete characterization of functions which act, via superposition, on Sobolev spaces
-
Marcus, M.; Mizel, V. J. Complete characterization of functions which act, via superposition, on Sobolev spaces. Trans. Amer. Math. Soc. 251 (1979), 187-218.
-
(1979)
Trans. Amer. Math. Soc.
, vol.251
, pp. 187-218
-
-
Marcus, M.1
Mizel, V.J.2
-
16
-
-
84972525916
-
Boundary regularity and the Dirichlet problem for harmonic maps
-
Schoen, R.; Uhlenbeck, K. Boundary regularity and the Dirichlet problem for harmonic maps. J. Differential Geom. 18 (1983), no. 2, 253-268.
-
(1983)
J. Differential Geom.
, vol.18
, Issue.2
, pp. 253-268
-
-
Schoen, R.1
Uhlenbeck, K.2
-
17
-
-
0002709161
-
The cut locus and conjugate locus of a Riemannian manifold
-
Weinstein, A. D. The cut locus and conjugate locus of a Riemannian manifold. Ann. of Math. (2) 87 (1968), 29-41.
-
(1968)
Ann. of Math. (2)
, vol.87
, pp. 29-41
-
-
Weinstein, A.D.1
|