메뉴 건너뛰기




Volumn 112, Issue 3, 2002, Pages 517-527

Quintic spline approach to the solution of a singularly-perturbed boundary-value problem

Author keywords

boundary layers; monotone matrices; quintic splines; Singularly perturbed boundary value problems; uniform convergence

Indexed keywords

BOUNDARY VALUE PROBLEMS; LINEAR SYSTEMS; NUMERICAL METHODS; PERTURBATION TECHNIQUES;

EID: 0036104664     PISSN: 00223239     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1017959915002     Document Type: Article
Times cited : (28)

References (13)
  • 1
    • 0000850678 scopus 로고
    • A Hybrid Asymptotic Finite-Element Method for Stiff Two-Point Boundary- Value Problems
    • CHIN, R. C. Y., and KRASNY, R., A Hybrid Asymptotic Finite-Element Method for Stiff Two-Point Boundary- Value Problems, SIAM Journal on Scientific and Statistical Computing, Vol. 4, pp. 229-243, 1983.
    • (1983) SIAM Journal on Scientific and Statistical Computing , vol.4 , pp. 229-243
    • Chin, R.C.Y.1    Krasny, R.2
  • 2
    • 9744231643 scopus 로고
    • Numerical Solution of Singularly-Perturbed Boundary-Value Problems Using a Collocation Method with Tension Splines
    • Birkhaüser, Boston, Massachusetts
    • MAJER, M. R., Numerical Solution of Singularly-Perturbed Boundary-Value Problems Using a Collocation Method with Tension Splines, Progress in Scientific Computing, Birkhaüser, Boston, Massachusetts, Vol. 5, pp. 206-223, 1985.
    • (1985) Progress in Scientific Computing , vol.5 , pp. 206-223
    • Majer, M.R.1
  • 3
    • 0020709071 scopus 로고
    • Numerical Solution of Stiff and Convection-Diffusion Equations Using Adaptive Spline Function Approximation
    • JAIN, M. K., and AZIZ, T., Numerical Solution of Stiff and Convection-Diffusion Equations Using Adaptive Spline Function Approximation, Applied Mathematical Modeling, Vol. 7, pp. 57-63, 1983.
    • (1983) Applied Mathematical Modeling , vol.7 , pp. 57-63
    • Jain, M.K.1    Aziz, T.2
  • 4
    • 0002597533 scopus 로고
    • Solving Singularly-Perturbed Boundary-Value Problems by Splines in Tension
    • SURLA, K., and STOJANOVIC, M., Solving Singularly-Perturbed Boundary-Value Problems by Splines in Tension, Journal of Computational and Applied Mathematics, Vol. 24, pp. 355-363, 1988.
    • (1988) Journal of Computational and Applied Mathematics , vol.24 , pp. 355-363
    • Surla, K.1    Stojanovic, M.2
  • 6
    • 9744286487 scopus 로고
    • A Spline Difference Scheme for Boundary-Value Problems with a Small Parameter
    • University of Novi Sad
    • SURLA, K., and VUKOSLAVCEVIC, V., A Spline Difference Scheme for Boundary-Value Problems with a Small Parameter, Review of Research, Faculty of Science, Mathematics Series, University of Novi Sad, Vol. 25, pp. 159-166, 1995.
    • (1995) Review of Research, Faculty of Science, Mathematics Series , vol.25 , pp. 159-166
    • Surla, K.1    Vukoslavcevic, V.2
  • 8
    • 0004209351 scopus 로고    scopus 로고
    • Kluwer Academic Publishers, Dordrecht, Netherlands
    • MICULA, G., Handbook of Splines, Kluwer Academic Publishers, Dordrecht, Netherlands, 1999.
    • (1999) Handbook of Splines
    • Micula, G.1
  • 13
    • 0030501331 scopus 로고    scopus 로고
    • Variable-Mesh Difference Scheme for Singularly-Perturbed Boundary-Value Problems Using Splines
    • KADALBAJOO, M. K., and BAWA, R. K., Variable-Mesh Difference Scheme for Singularly-Perturbed Boundary-Value Problems Using Splines, Journal of Optimization Theory and Applications, Vol. 9, pp. 405-416, 1996.
    • (1996) Journal of Optimization Theory and Applications , vol.9 , pp. 405-416
    • Kadalbajoo, M.K.1    Bawa, R.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.