-
1
-
-
0003421814
-
-
London: Academic Press
-
Dodd, R K, Eilbeck, J C, Gibbon, J D, and Morris, H C. 1982. Solitons and Nonlinear Wave Equations, London:Academic Press.
-
(1982)
Solitons and Nonlinear Wave Equations
-
-
Dodd, R.K.1
Eilbeck, J.C.2
Gibbon, J.D.3
Morris, H.C.4
-
2
-
-
0002003681
-
Integrability
-
Zakharov V.E., (ed), Berlin: Springer
-
Flaschka, H, Newell, A C, and Tabor, M. 1991. “Integrability”. In What is Integrability?, Edited by:Zakharov, V E. Berlin:Springer.
-
(1991)
What is Integrability?
-
-
Flaschka, H.1
Newell, A.C.2
Tabor, M.3
-
3
-
-
36049057587
-
Method for Solving the Korteweg-de Vries Equation
-
Gardner, C S, Greene, J M, Kruskal, M D, and Miura, R M. 1967. Method for Solving the Korteweg-de Vries Equation. Phys. Rev. Lett., 19:1095–1097.
-
(1967)
Phys. Rev. Lett.
, vol.19
, pp. 1095-1097
-
-
Gardner, C.S.1
Greene, J.M.2
Kruskal, M.D.3
Miura, R.M.4
-
5
-
-
0034259179
-
Transparent Nonlinear Geometric Optics and Maxwell– Bloch Equations
-
Joly, J-L, Métivier, G, and Rausch, J. 2000. Transparent Nonlinear Geometric Optics and Maxwell– Bloch Equations. J. Diff. Eqs., 166(1):175–250.
-
(2000)
J. Diff. Eqs.
, vol.166
, Issue.1
, pp. 175-250
-
-
Joly, J.-L.1
Métivier, G.2
Rausch, J.3
-
6
-
-
0000861462
-
Perturbation Theory for Solitons
-
Karpman, V I, and Maslov, E M. 1977. Perturbation Theory for Solitons. Sov. Phys. J.E.T.P., 46(2):281–291.
-
(1977)
Sov. Phys. J.E.T.P.
, vol.46
, Issue.2
, pp. 281-291
-
-
Karpman, V.I.1
Maslov, E.M.2
-
7
-
-
0003058559
-
Obstacles to Asymptotic Integrability, in Algebraic Aspects of Integrable Systems
-
Birkhaüser Boston, Boston
-
Kodama, Y, and Mikhailov, A V. 1997. Obstacles to Asymptotic Integrability, in Algebraic Aspects of Integrable Systems. Progr. Nonlinear Differential Equations Appl., 26:173–204. Birkhaüser Boston, Boston
-
(1997)
Progr. Nonlinear Differential Equations Appl.
, vol.26
, pp. 173-204
-
-
Kodama, Y.1
Mikhailov, A.V.2
-
8
-
-
0000777045
-
Higher Order Approximation in the Reductive Perturbation Method. I. The Weakly Dispersive System
-
Kodama, Y, and Taniuti, T. 1978. Higher Order Approximation in the Reductive Perturbation Method. I. The Weakly Dispersive System. J. Phys. Soc. Jpn., 45(1):298–310.
-
(1978)
J. Phys. Soc. Jpn.
, vol.45
, Issue.1
, pp. 298-310
-
-
Kodama, Y.1
Taniuti, T.2
-
9
-
-
0001524186
-
On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves
-
Korteweg, D J, and Vries, G. 1895. On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves. Phil. Mag., 39:422–443.
-
(1895)
Phil. Mag.
, vol.39
, pp. 422-443
-
-
Korteweg, D.J.1
Vries, G.2
-
10
-
-
21844522837
-
Boussinesq Solitary Wave as a Multiple-Time Solution of the Korteweg-de Vries Hierarchy
-
Kraenkel, R A, Manna, M A, Montero, J C, and Pereira, J G. 1995. Boussinesq Solitary Wave as a Multiple-Time Solution of the Korteweg-de Vries Hierarchy. J. Math. Phys., 36(12):6822–6828.
-
(1995)
J. Math. Phys.
, vol.36
, Issue.12
, pp. 6822-6828
-
-
Kraenkel, R.A.1
Manna, M.A.2
Montero, J.C.3
Pereira, J.G.4
-
11
-
-
0031481541
-
The Role of the Korteweg-de Vries Hierarchy in the N-Soliton Dynamics of the Shallow Water Wave Equation
-
Kraenkel, R A, Manna, M A, Montero, J C, and Pereira, J G. 1997. The Role of the Korteweg-de Vries Hierarchy in the N-Soliton Dynamics of the Shallow Water Wave Equation. J. Phys. Soc. Jpn., 66(5):1277–1281.
-
(1997)
J. Phys. Soc. Jpn.
, vol.66
, Issue.5
, pp. 1277-1281
-
-
Kraenkel, R.A.1
Manna, M.A.2
Montero, J.C.3
Pereira, J.G.4
-
12
-
-
21844521262
-
The Korteweg-de Vries Hierarchy and Long Water-Waves
-
Kraenkel, R A, Manna, M A, and Pereira, J G. 1995. The Korteweg-de Vries Hierarchy and Long Water-Waves. J. Math. Phys., 36(1):307–320.
-
(1995)
J. Math. Phys.
, vol.36
, Issue.1
, pp. 307-320
-
-
Kraenkel, R.A.1
Manna, M.A.2
Pereira, J.G.3
-
13
-
-
0005544461
-
The Reductive Perturbation Method and the Korteweg-de Vries Hierarchy
-
Kraenkel, R A, Manna, M A, and Pereira, J G. 1995. The Reductive Perturbation Method and the Korteweg-de Vries Hierarchy. Acta Appl. Math., 39(1–3):389–403.
-
(1995)
Acta Appl. Math.
, vol.39
, Issue.1-3
, pp. 389-403
-
-
Kraenkel, R.A.1
Manna, M.A.2
Pereira, J.G.3
-
14
-
-
84981754671
-
Integrals of Nonlinear Equations of Evolution and Solitary Waves
-
Lax, P D. 1968. Integrals of Nonlinear Equations of Evolution and Solitary Waves. Commun. Pure Appl. Math., 21:467–490.
-
(1968)
Commun. Pure Appl. Math.
, vol.21
, pp. 467-490
-
-
Lax, P.D.1
-
15
-
-
0032388454
-
The Secular Solutions of the Linearized KdV Equation
-
Leblond, H. 1998. The Secular Solutions of the Linearized KdV Equation. J. Math. Phys., 39(7):3772–3782.
-
(1998)
J. Math. Phys.
, vol.39
, Issue.7
, pp. 3772-3782
-
-
Leblond, H.1
-
16
-
-
0005618362
-
Solitons in Ferromagnets and the KdV Hierarchy
-
Leblond, H. 2001. Solitons in Ferromagnets and the KdV Hierarchy. Nonlinear Phenomena in Complex Systems, 4(1):67–84.
-
(2001)
Nonlinear Phenomena in Complex Systems
, vol.4
, Issue.1
, pp. 67-84
-
-
Leblond, H.1
-
17
-
-
36849102307
-
Korteweg-de Vries Equation and Generalizations. III. Derivation of the Korteweg-de Vries Equation and Burgers Equation
-
Su, C H, and Gardner, C S. 1969. Korteweg-de Vries Equation and Generalizations. III. Derivation of the Korteweg-de Vries Equation and Burgers Equation. J. Math. Phys., 10(3):536–539.
-
(1969)
J. Math. Phys.
, vol.10
, Issue.3
, pp. 536-539
-
-
Su, C.H.1
Gardner, C.S.2
|