메뉴 건너뛰기




Volumn 9, Issue 3, 2002, Pages 325-346

Higher order terms in multiscale expansions: A linearized kdv hierarchy

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0036055943     PISSN: 14029251     EISSN: 17760852     Source Type: Journal    
DOI: 10.2991/jnmp.2002.9.3.6     Document Type: Article
Times cited : (8)

References (17)
  • 5
    • 0034259179 scopus 로고    scopus 로고
    • Transparent Nonlinear Geometric Optics and Maxwell– Bloch Equations
    • Joly, J-L, Métivier, G, and Rausch, J. 2000. Transparent Nonlinear Geometric Optics and Maxwell– Bloch Equations. J. Diff. Eqs., 166(1):175–250.
    • (2000) J. Diff. Eqs. , vol.166 , Issue.1 , pp. 175-250
    • Joly, J.-L.1    Métivier, G.2    Rausch, J.3
  • 6
    • 0000861462 scopus 로고
    • Perturbation Theory for Solitons
    • Karpman, V I, and Maslov, E M. 1977. Perturbation Theory for Solitons. Sov. Phys. J.E.T.P., 46(2):281–291.
    • (1977) Sov. Phys. J.E.T.P. , vol.46 , Issue.2 , pp. 281-291
    • Karpman, V.I.1    Maslov, E.M.2
  • 7
    • 0003058559 scopus 로고    scopus 로고
    • Obstacles to Asymptotic Integrability, in Algebraic Aspects of Integrable Systems
    • Birkhaüser Boston, Boston
    • Kodama, Y, and Mikhailov, A V. 1997. Obstacles to Asymptotic Integrability, in Algebraic Aspects of Integrable Systems. Progr. Nonlinear Differential Equations Appl., 26:173–204. Birkhaüser Boston, Boston
    • (1997) Progr. Nonlinear Differential Equations Appl. , vol.26 , pp. 173-204
    • Kodama, Y.1    Mikhailov, A.V.2
  • 8
    • 0000777045 scopus 로고
    • Higher Order Approximation in the Reductive Perturbation Method. I. The Weakly Dispersive System
    • Kodama, Y, and Taniuti, T. 1978. Higher Order Approximation in the Reductive Perturbation Method. I. The Weakly Dispersive System. J. Phys. Soc. Jpn., 45(1):298–310.
    • (1978) J. Phys. Soc. Jpn. , vol.45 , Issue.1 , pp. 298-310
    • Kodama, Y.1    Taniuti, T.2
  • 9
    • 0001524186 scopus 로고
    • On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves
    • Korteweg, D J, and Vries, G. 1895. On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves. Phil. Mag., 39:422–443.
    • (1895) Phil. Mag. , vol.39 , pp. 422-443
    • Korteweg, D.J.1    Vries, G.2
  • 10
    • 21844522837 scopus 로고
    • Boussinesq Solitary Wave as a Multiple-Time Solution of the Korteweg-de Vries Hierarchy
    • Kraenkel, R A, Manna, M A, Montero, J C, and Pereira, J G. 1995. Boussinesq Solitary Wave as a Multiple-Time Solution of the Korteweg-de Vries Hierarchy. J. Math. Phys., 36(12):6822–6828.
    • (1995) J. Math. Phys. , vol.36 , Issue.12 , pp. 6822-6828
    • Kraenkel, R.A.1    Manna, M.A.2    Montero, J.C.3    Pereira, J.G.4
  • 11
    • 0031481541 scopus 로고    scopus 로고
    • The Role of the Korteweg-de Vries Hierarchy in the N-Soliton Dynamics of the Shallow Water Wave Equation
    • Kraenkel, R A, Manna, M A, Montero, J C, and Pereira, J G. 1997. The Role of the Korteweg-de Vries Hierarchy in the N-Soliton Dynamics of the Shallow Water Wave Equation. J. Phys. Soc. Jpn., 66(5):1277–1281.
    • (1997) J. Phys. Soc. Jpn. , vol.66 , Issue.5 , pp. 1277-1281
    • Kraenkel, R.A.1    Manna, M.A.2    Montero, J.C.3    Pereira, J.G.4
  • 12
    • 21844521262 scopus 로고
    • The Korteweg-de Vries Hierarchy and Long Water-Waves
    • Kraenkel, R A, Manna, M A, and Pereira, J G. 1995. The Korteweg-de Vries Hierarchy and Long Water-Waves. J. Math. Phys., 36(1):307–320.
    • (1995) J. Math. Phys. , vol.36 , Issue.1 , pp. 307-320
    • Kraenkel, R.A.1    Manna, M.A.2    Pereira, J.G.3
  • 13
    • 0005544461 scopus 로고
    • The Reductive Perturbation Method and the Korteweg-de Vries Hierarchy
    • Kraenkel, R A, Manna, M A, and Pereira, J G. 1995. The Reductive Perturbation Method and the Korteweg-de Vries Hierarchy. Acta Appl. Math., 39(1–3):389–403.
    • (1995) Acta Appl. Math. , vol.39 , Issue.1-3 , pp. 389-403
    • Kraenkel, R.A.1    Manna, M.A.2    Pereira, J.G.3
  • 14
    • 84981754671 scopus 로고
    • Integrals of Nonlinear Equations of Evolution and Solitary Waves
    • Lax, P D. 1968. Integrals of Nonlinear Equations of Evolution and Solitary Waves. Commun. Pure Appl. Math., 21:467–490.
    • (1968) Commun. Pure Appl. Math. , vol.21 , pp. 467-490
    • Lax, P.D.1
  • 15
    • 0032388454 scopus 로고    scopus 로고
    • The Secular Solutions of the Linearized KdV Equation
    • Leblond, H. 1998. The Secular Solutions of the Linearized KdV Equation. J. Math. Phys., 39(7):3772–3782.
    • (1998) J. Math. Phys. , vol.39 , Issue.7 , pp. 3772-3782
    • Leblond, H.1
  • 16
    • 0005618362 scopus 로고    scopus 로고
    • Solitons in Ferromagnets and the KdV Hierarchy
    • Leblond, H. 2001. Solitons in Ferromagnets and the KdV Hierarchy. Nonlinear Phenomena in Complex Systems, 4(1):67–84.
    • (2001) Nonlinear Phenomena in Complex Systems , vol.4 , Issue.1 , pp. 67-84
    • Leblond, H.1
  • 17
    • 36849102307 scopus 로고
    • Korteweg-de Vries Equation and Generalizations. III. Derivation of the Korteweg-de Vries Equation and Burgers Equation
    • Su, C H, and Gardner, C S. 1969. Korteweg-de Vries Equation and Generalizations. III. Derivation of the Korteweg-de Vries Equation and Burgers Equation. J. Math. Phys., 10(3):536–539.
    • (1969) J. Math. Phys. , vol.10 , Issue.3 , pp. 536-539
    • Su, C.H.1    Gardner, C.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.