-
1
-
-
0141647781
-
Max-semistable hemigroups: Structure, domains of attraction, and limit theorems with random sample size
-
Becker-Kern, P. (2001). Max-semistable hemigroups: Structure, domains of attraction, and limit theorems with random sample size. Probab. Math. Statist. 21, 441-465.
-
(2001)
Probab. Math. Statist.
, vol.21
, pp. 441-465
-
-
Becker-Kern, P.1
-
2
-
-
0003112604
-
Results and problems related to the pointwise central limit theorem
-
Szyszkowicz, B. (ed.), Elsevier, Amsterdam
-
Berkes, I. (1998). Results and problems related to the pointwise central limit theorem. In Szyszkowicz, B. (ed.), Asymptotic Methods in Probability and Statistics, Elsevier, Amsterdam, pp. 59-96.
-
(1998)
Asymptotic Methods in Probability and Statistics
, pp. 59-96
-
-
Berkes, I.1
-
3
-
-
0030590336
-
On the pointwise central limit theorem and mixtures of stable distributions
-
Berkes, I., and Csáki, E. (1996). On the pointwise central limit theorem and mixtures of stable distributions. Statist. Probab. Lett. 29, 361-368.
-
(1996)
Statist. Probab. Lett.
, vol.29
, pp. 361-368
-
-
Berkes, I.1
Csáki, E.2
-
4
-
-
0041091187
-
Almost sure limit theorems for the St. Petersburg game
-
Berkes, I., Csáki, E., and Csörgo, S. (1999). Almost sure limit theorems for the St. Petersburg game. Statist. Probab. Lett. 45, 23-30.
-
(1999)
Statist. Probab. Lett.
, vol.45
, pp. 23-30
-
-
Berkes, I.1
Csáki, E.2
Csörgo, S.3
-
5
-
-
0141647788
-
Almost sure limit theorems for sums and maxima from the domain of geometric partial attraction of semistable laws
-
J. Bolyai Math. Soc., Berkes, I., et al. (eds.), Budapest, to appear
-
Berkes, I., Csáki, E., Csörgo, S., and Megyesi, Z. (2002). Almost sure limit theorems for sums and maxima from the domain of geometric partial attraction of semistable laws. In Berkes, I., et al. (eds.), Proceedings of the Fourth Hungarian Colloquium on Limit Theorems in Probability and Statistics, J. Bolyai Math. Soc., Budapest, to appear.
-
(2002)
Proceedings of the Fourth Hungarian Colloquium on Limit Theorems in Probability and Statistics
-
-
Berkes, I.1
Csáki, E.2
Csörgo, S.3
Megyesi, Z.4
-
6
-
-
0011118521
-
Counter examples related to the a.s. central limit theorem
-
Berkes, I., Dehling, H., and Móri, T. F. (1991). Counter examples related to the a.s. central limit theorem. Studia Sci. Math. Hungar. 26, 153-164.
-
(1991)
Studia Sci. Math. Hungar.
, vol.26
, pp. 153-164
-
-
Berkes, I.1
Dehling, H.2
Móri, T.F.3
-
7
-
-
0141647780
-
Rarely observed sample maxima
-
Canto e Castro, L., de Haan, L., and Graça Temido, M. (2000). Rarely observed sample maxima. Teor. Veroyatnost. i Primenen. 45, 779-782.
-
(2000)
Teor. Veroyatnost. i Primenen.
, vol.45
, pp. 779-782
-
-
Canto e Castro, L.1
De Haan, L.2
Graça Temido, M.3
-
8
-
-
0002038995
-
Almost sure convergence in extreme value theory
-
Cheng, S., Peng, L., and Qi, Y. (1998). Almost sure convergence in extreme value theory. Math. Nachr. 190, 43-49.
-
(1998)
Math. Nachr.
, vol.190
, pp. 43-49
-
-
Cheng, S.1
Peng, L.2
Qi, Y.3
-
10
-
-
0013039394
-
A szentpétervári paradoxon
-
Csörgo, S. (1995). A szentpétervári paradoxon (in Hungarian). Polygon 5/1, 19-79.
-
(1995)
Polygon
, vol.1-5
, pp. 19-79
-
-
Csörgo, S.1
-
11
-
-
4243909330
-
Intermediate sums and stochastic compactness of maxima
-
Csörgo, S., and Mason, D. M. (1995). Intermediate sums and stochastic compactness of maxima. J. Statist. Plann. Inference 45, 81-90.
-
(1995)
J. Statist. Plann. Inference
, vol.45
, pp. 81-90
-
-
Csörgo, S.1
Mason, D.M.2
-
12
-
-
4243497010
-
Trimmed sums from the domain of geometric partial attraction of semistable laws
-
de Gunst, M., et al. (eds.), Hayward, California
-
Csörgo, S., and Megyesi, Z. (2001). Trimmed sums from the domain of geometric partial attraction of semistable laws. In de Gunst, M., et al. (eds.), The State of Art in Mathematical Statistics and Probability: Willem van Zwet Festschrift, IMS Lecture Notes - Monograph Series, Hayward, California, Vol. 36, pp. 173-194.
-
(2001)
The State of Art in Mathematical Statistics and Probability: Willem Van Zwet Festschrift, IMS Lecture Notes - Monograph Series
, vol.36
, pp. 173-194
-
-
Csörgo, S.1
Megyesi, Z.2
-
14
-
-
0013086322
-
On merging of probabilities
-
D'Aristotile, A., Diaconis, P., and Freedman, D. (1988). On merging of probabilities. Sankhya Ser. A 50, 363-380.
-
(1988)
Sankhya Ser. A
, vol.50
, pp. 363-380
-
-
D'Aristotile, A.1
Diaconis, P.2
Freedman, D.3
-
17
-
-
0000005110
-
Sur la distribution limite du terme maximum d'une série aléatoire
-
Gnedenko, B. V. (1943). Sur la distribution limite du terme maximum d'une série aléatoire. Ann. Math. 44, 423-453.
-
(1943)
Ann. Math.
, vol.44
, pp. 423-453
-
-
Gnedenko, B.V.1
-
18
-
-
0141536565
-
Max-semistable laws corresponding to linear and power normalizations
-
Grinevich, I. V. (1992). Max-semistable laws corresponding to linear and power normalizations, Teor. Veroyatnost. i Primenen. 37, 774-776.
-
(1992)
Teor. Veroyatnost. i Primenen.
, vol.37
, pp. 774-776
-
-
Grinevich, I.V.1
-
19
-
-
0141759696
-
Max-semistable laws under linear and power normalizations
-
Zolotarev, V. M., et al. (eds.), TVP/VSP, Moscow-Utrecht
-
Grinevich, I. V. (1992). Max-semistable laws under linear and power normalizations. In Zolotarev, V. M., et al. (eds.), Stability Problems for Stochastic Models, TVP/VSP, Moscow-Utrecht, pp. 65-73.
-
(1992)
Stability Problems for Stochastic Models
, pp. 65-73
-
-
Grinevich, I.V.1
-
20
-
-
0000890307
-
Domains of attraction of the max-semistable laws under linear and power normalizations
-
Grinevich, I. V. (1993). Domains of attraction of the max-semistable laws under linear and power normalizations. Theory Probab. Appl. 38, 640-650. [Russian version: Teor. Veroyatnost. i Primenen. 38, 787-799.]
-
(1993)
Theory Probab. Appl.
, vol.38
, pp. 640-650
-
-
Grinevich, I.V.1
-
21
-
-
0141647789
-
-
Grinevich, I. V. (1993). Domains of attraction of the max-semistable laws under linear and power normalizations. Theory Probab. Appl. 38, 640-650. [Russian version: Teor. Veroyatnost. i Primenen. 38, 787-799.]
-
Teor. Veroyatnost. i Primenen.
, vol.38
, pp. 787-799
-
-
-
23
-
-
0141871271
-
Asymptotically balanced functions and stochastic compactness of sample extremes
-
de Haan, L., and Resnick, S. I. (1984). Asymptotically balanced functions and stochastic compactness of sample extremes. Ann. Probab. 12, 588-608.
-
(1984)
Ann. Probab.
, vol.12
, pp. 588-608
-
-
De Haan, L.1
Resnick, S.I.2
-
25
-
-
0013040421
-
A probabilistic approach to semistable laws and their domains of partial attraction
-
Megyesi, Z. (2000). A probabilistic approach to semistable laws and their domains of partial attraction. Acta Sci. Math. (Szeged) 66, 403-434.
-
(2000)
Acta Sci. Math. (Szeged).
, vol.66
, pp. 403-434
-
-
Megyesi, Z.1
-
26
-
-
0010065627
-
The a.s. limit distribution of the longest head run
-
Móri, T. F. (1993). The a.s. limit distribution of the longest head run. Canad. J. Math. 45, 1245-1262.
-
(1993)
Canad. J. Math.
, vol.45
, pp. 1245-1262
-
-
Móri, T.F.1
-
27
-
-
0141536567
-
Multivariate extreme value limit distributions under monotone normalization
-
Zolotarev, V. M., et al. (eds.), TVP/VSP, Moscow-Utrecht
-
Pancheva, E. (1992). Multivariate extreme value limit distributions under monotone normalization. In Zolotarev, V. M., et al. (eds.), Stability Problems for Stochastic Models, TVP/VSP, Moscow-Utrecht, pp. 186-202.
-
(1992)
Stability Problems for Stochastic Models
, pp. 186-202
-
-
Pancheva, E.1
|