메뉴 건너뛰기




Volumn 22, Issue 4, 2002, Pages 599-622

A probabilistic approach to the solution of the Neumann problem for nonlinear parabolic equations

Author keywords

Numerical methods for parabolic equations; Probabilistic representations; Weak approximation of stochastic differential equations

Indexed keywords

BOUNDARY VALUE PROBLEMS; NUMERICAL METHODS; PARTIAL DIFFERENTIAL EQUATIONS; STOCHASTIC SYSTEMS;

EID: 0036031941     PISSN: 02724979     EISSN: None     Source Type: Journal    
DOI: 10.1093/imanum/22.4.599     Document Type: Article
Times cited : (11)

References (21)
  • 2
    • 0000868819 scopus 로고
    • A table of solutions of the one-dimensional Burgers equation
    • BENTON, E. R. & PLATZMAN, G. W. (1972) A table of solutions of the one-dimensional Burgers equation. Quart. Appl. Math., 30, 195-212.
    • (1972) Quart. Appl. Math. , vol.30 , pp. 195-212
    • Benton, E.R.1    Platzman, G.W.2
  • 3
    • 0031997542 scopus 로고    scopus 로고
    • Numerical approximation for functionals of reflecting diffusion processes
    • COSTANTINI, C., PACCHIAROTTI, B. & SARTORETTO, F. (1998) Numerical approximation for functionals of reflecting diffusion processes. SIAM J. Appl. Math., 58, 73-102.
    • (1998) SIAM J. Appl. Math. , vol.58 , pp. 73-102
    • Costantini, C.1    Pacchiarotti, B.2    Sartoretto, F.3
  • 9
    • 0001024668 scopus 로고
    • Solving first boundary value problems of parabolic type by numerical integration of stochastic differential equations
    • MILSTEIN, G. N. (1995a) Solving first boundary value problems of parabolic type by numerical integration of stochastic differential equations. Theory Prob. Appl., 40, 657-665.
    • (1995) Theory Prob. Appl. , vol.40 , pp. 657-665
    • Milstein, G.N.1
  • 10
    • 0007026955 scopus 로고
    • The solving of boundary value problems by numerical integration of stochastic equations
    • MILSTEIN, G. N. (1995b) The solving of boundary value problems by numerical integration of stochastic equations. Math. Comp. Simul., 38, 77-85.
    • (1995) Math. Comp. Simul. , vol.38 , pp. 77-85
    • Milstein, G.N.1
  • 11
    • 0000615649 scopus 로고    scopus 로고
    • Application of numerical integration of stochastic equations for solving boundary value problems with the Neumann boundary conditions
    • MILSTEIN, G. N. (1996) Application of numerical integration of stochastic equations for solving boundary value problems with the Neumann boundary conditions. Theory Prob. Appl., 41, 210-218.
    • (1996) Theory Prob. Appl. , vol.41 , pp. 210-218
    • Milstein, G.N.1
  • 12
    • 0004064339 scopus 로고    scopus 로고
    • Preprint No. 380, Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin (in print in Numer. Methods for Partial Differential Equations)
    • MILSTEIN, G. N. (1997) The probability approach to numerical solution of nonlinear parabolic equations, Preprint No. 380, Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin (in print in Numer. Methods for Partial Differential Equations).
    • (1997) The Probability Approach to Numerical Solution of Nonlinear Parabolic Equations
    • Milstein, G.N.1
  • 13
    • 0034394607 scopus 로고    scopus 로고
    • Numerical algorithms for semilinear parabolic equations with small parameter based on approximation of stochastic equations
    • MILSTEIN, G. N. & TRETYAKOV, M. V. (2000a) Numerical algorithms for semilinear parabolic equations with small parameter based on approximation of stochastic equations. Math. Comp., 69, 237-267.
    • (2000) Math. Comp. , vol.69 , pp. 237-267
    • Milstein, G.N.1    Tretyakov, M.V.2
  • 15
    • 0035541112 scopus 로고    scopus 로고
    • Numerical solution of Dirichlet problems for nonlinear parabolic equations by a probabilistic approach
    • MILSTEIN, G. N. & TRETYAKOV, M. V. (2001) Numerical solution of Dirichlet problems for nonlinear parabolic equations by a probabilistic approach. IMA J. Numer. Anal., 21, 887-917.
    • (2001) IMA J. Numer. Anal. , vol.21 , pp. 887-917
    • Milstein, G.N.1    Tretyakov, M.V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.