메뉴 건너뛰기




Volumn 10, Issue 4, 2002, Pages 287-296

Generic existence of fixed points for set-valued mappings

Author keywords

Banach space; Complete metric space; Fixed point; Generic property; Set valued mapping

Indexed keywords


EID: 0036031779     PISSN: 09276947     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1020602030873     Document Type: Article
Times cited : (23)

References (16)
  • 1
    • 51249191814 scopus 로고
    • Multi-valued contraction mappings in generalized metric spaces
    • Covitz, H. and Nadler, S. B., Jr.: Multi-valued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5-11.
    • (1970) Israel J. Math. , vol.8 , pp. 5-11
    • Covitz, H.1    Nadler S.B., Jr.2
  • 2
    • 0041634885 scopus 로고    scopus 로고
    • Comparative properties of three metrics in the space of compact convex sets
    • Diamond, Ph., Kloeden, P. E., Rubinov, A. M. and Vladimirov, A.: Comparative properties of three metrics in the space of compact convex sets, Set-Valued Anal. 5 (1997), 267-289.
    • (1997) Set-Valued Anal. , vol.5 , pp. 267-289
    • Diamond, Ph.1    Kloeden, P.E.2    Rubinov, A.M.3    Vladimirov, A.4
  • 5
    • 0021458793 scopus 로고
    • Convergence of viable solutions of differential inclusions with convex compact graphs
    • Leizarowitz, A.: Convergence of viable solutions of differential inclusions with convex compact graphs, SIAM J. Control Optim. 22 (1985), 514-522.
    • (1985) SIAM J. Control Optim. , vol.22 , pp. 514-522
    • Leizarowitz, A.1
  • 6
    • 0042572364 scopus 로고
    • Eigenvalues of convex processes and convergence properties of differential inclusions
    • Leizarowitz, A.: Eigenvalues of convex processes and convergence properties of differential inclusions, Set- Valued Anal. 2 (1994), 505-527.
    • (1994) Set- Valued Anal. , vol.2 , pp. 505-527
    • Leizarowitz, A.1
  • 7
    • 84968466492 scopus 로고
    • A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex space
    • Lim, T.-C.: A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex space, Bull. Amer Math. Soc. 80 (1974), 1123-1126.
    • (1974) Bull. Amer Math. Soc. , vol.80 , pp. 1123-1126
    • Lim, T.-C.1
  • 8
    • 84972513402 scopus 로고
    • Multi-valued contraction mappings
    • Nadler, S. B., Jr.: Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
    • (1969) Pacific J. Math. , vol.30 , pp. 475-488
    • Nadler S.B., Jr.1
  • 9
    • 0002114360 scopus 로고
    • Fixed points of contractive functions
    • Reich, S.: Fixed points of contractive functions, Boll. Un. Mat. Ital. 5 (1972), 26-42.
    • (1972) Boll. Un. Mat. Ital. , vol.5 , pp. 26-42
    • Reich, S.1
  • 10
    • 0001654390 scopus 로고
    • Approximate selections, best approximations, fixed points, and invariant sets
    • Reich, S.: Approximate selections, best approximations, fixed points, and invariant sets, J. Math. Anal. Appl. 62 (1978), 104-113.
    • (1978) J. Math. Anal. Appl. , vol.62 , pp. 104-113
    • Reich, S.1
  • 12
    • 0043073142 scopus 로고
    • Convex processes and Hamiltonian dynamical systems
    • Lecture Notes in Econom. and Math. Systems 168, Springer, Berlin
    • Rockafellar, R. T.: Convex processes and Hamiltonian dynamical systems, In: Convex Analysis and Mathematical Economics, Lecture Notes in Econom. and Math. Systems 168, Springer, Berlin, 1979, pp. 122-136.
    • (1979) Convex Analysis and Mathematical Economics , pp. 122-136
    • Rockafellar, R.T.1
  • 13
    • 0000900064 scopus 로고
    • Economic dynamics
    • Rubinov, A. M.: Economic dynamics, ¿ J. Soviet Math. 26 (1984), 1975-2012.
    • (1984) J. Soviet Math. , vol.26 , pp. 1975-2012
    • Rubinov, A.M.1
  • 14
    • 0042731250 scopus 로고    scopus 로고
    • Convexity criteria for set-valued maps
    • Sach, Ph. H. and Yen, N. D.: Convexity criteria for set-valued maps, Set- Valued Anal. 5 (1997), 37-45.
    • (1997) Set- Valued Anal. , vol.5 , pp. 37-45
    • Sach, Ph.H.1    Yen, N.D.2
  • 15
    • 0141700804 scopus 로고    scopus 로고
    • Turnpike theorem for a class of set-valued mappings
    • Zaslavski, A. J.: Turnpike theorem for a class of set-valued mappings, Numer Funct. Anal. Optim. 17 (1996), 215-240.
    • (1996) Numer Funct. Anal. Optim. , vol.17 , pp. 215-240
    • Zaslavski, A.J.1
  • 16
    • 0034462139 scopus 로고    scopus 로고
    • Generic well-posedness of optimal control problems without convexity assumptions
    • Zaslavski, A. J.: Generic well-posedness of optimal control problems without convexity assumptions, SIAM J. Control Optim. 39 (2000), 250-280.
    • (2000) SIAM J. Control Optim. , vol.39 , pp. 250-280
    • Zaslavski, A.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.