메뉴 건너뛰기




Volumn 30, Issue 2, 2002, Pages 723-801

Random walks on discrete groups of polynomial volume growth

Author keywords

Convolution; Group; Harnack inequality; Heat kernel; Random walk

Indexed keywords


EID: 0036018198     PISSN: 00911798     EISSN: None     Source Type: Journal    
DOI: 10.1214/aop/1023481007     Document Type: Article
Times cited : (63)

References (51)
  • 3
    • 0001094583 scopus 로고
    • An application of homogenisation theory to harmonic analysis: Harnack inequalities and Riesz transforms on Lie groups of polynomial growth
    • (1992) Canad. J. Math. , vol.44 , pp. 1-37
    • Alexopoulos, G.K.1
  • 4
    • 84972572935 scopus 로고
    • An application of homogenization theory to harmonic analysis on solvable lie groups of polynomial growth
    • (1993) Pacific J. Math. , vol.159 , pp. 19-45
    • Alexopoulos, G.K.1
  • 28
    • 0000268465 scopus 로고
    • Asymptotics of fundamental solutions for second order differential equations
    • English translation (1982) Math. USSR.-Sb. 41 249-267
    • (1980) Mat. Sb. , vol.113 , pp. 302-323
    • Kozlov, S.M.1
  • 30
    • 84959822032 scopus 로고
    • Estimates for differences and Harnack inequality for difference operators coming from random walks with symmetric, specially inhomogeneous, increments
    • (1991) Proc. London Math. Soc. , vol.63 , pp. 552-568
    • Lawler, G.F.1
  • 39
    • 0000864272 scopus 로고
    • Harnack's inequality for elliptic equations and the Hölder property of their solutions
    • (1983) J. Soviet Math. , vol.21 , pp. 851-863
    • Safonov, M.V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.