-
2
-
-
0000664045
-
The asymptotic number of labelled graphs with given degree sequences
-
Bender, E. A. and Canfield, E. R. (1978) The asymptotic number of labelled graphs with given degree sequences. J. Combin. Theory Ser. A 24 296-307.
-
(1978)
J. Combin. Theory Ser. A
, vol.24
, pp. 296-307
-
-
Bender, E.A.1
Canfield, E.R.2
-
3
-
-
85012603843
-
A probabilistic proof of an asymptotic formula for the number of labelled regular graphs
-
Bollobás, B. (1980) A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Europ. J. Combin. 1 311-316.
-
(1980)
Europ. J. Combin.
, vol.1
, pp. 311-316
-
-
Bollobás, B.1
-
4
-
-
0012823585
-
Random graphs
-
(H. N. V. Temperley, ed.), Vol. 52 of LMS Lecture Note Series, Cambridge University Press, Cambridge
-
Bollobás, B. (1981) Random graphs. In Combinatorics (H. N. V. Temperley, ed.), Vol. 52 of LMS Lecture Note Series, Cambridge University Press, Cambridge, 80-102.
-
(1981)
Combinatorics
, pp. 80-102
-
-
Bollobás, B.1
-
5
-
-
85012809279
-
Almost all regular graphs are Hamiltonian
-
Bollobás, B. (1983) Almost all regular graphs are Hamiltonian. Europ. J. Combin. 4 97-106.
-
(1983)
Europ. J. Combin.
, vol.4
, pp. 97-106
-
-
Bollobás, B.1
-
8
-
-
0001560222
-
Hamiltonian cycles in random regular graphs
-
Fenner, T. I. and Frieze, A. M. (1984) Hamiltonian cycles in random regular graphs. J. Combin. Theory Ser. B 37 103-112.
-
(1984)
J. Combin. Theory Ser. B
, vol.37
, pp. 103-112
-
-
Fenner, T.I.1
Frieze, A.M.2
-
9
-
-
0039663043
-
Random regular graphs of non-constant degree
-
Technical Report, Department of Mathematical Sciences, Carnegie Mellon University
-
Frieze, A. M. (1988) Random regular graphs of non-constant degree. Technical Report, Department of Mathematical Sciences, Carnegie Mellon University.
-
(1988)
-
-
Frieze, A.M.1
-
10
-
-
38249032705
-
Finding Hamilton cycles in sparse random graphs
-
Frieze, A. M. (1988) Finding Hamilton cycles in sparse random graphs. J. Combin. Theory Ser. B 44 230-250.
-
(1988)
J. Combin. Theory Ser. B
, vol.44
, pp. 230-250
-
-
Frieze, A.M.1
-
11
-
-
38049062997
-
On the independence and chromatic numbers of random regular graphs
-
Frieze, A. M. and Łuczak, T. (1992) On the independence and chromatic numbers of random regular graphs. J. Combin. Theory Ser. B 54 123-132.
-
(1992)
J. Combin. Theory Ser. B
, vol.54
, pp. 123-132
-
-
Frieze, A.M.1
Luczak, T.2
-
13
-
-
0012764003
-
Random regular graphs of high degree
-
To appear in
-
Krivelevich, M., Sudakov, B., Vu, V. and Wormald, N. C. Random regular graphs of high degree. To appear in Random Struct. Alg.
-
Random Struct. Alg.
-
-
Krivelevich, M.1
Sudakov, B.2
Vu, V.3
Wormald, N.C.4
-
15
-
-
0001622847
-
Sparse random graphs with a given degree sequence
-
(A. M. Frieze and T. Ł, eds), Wiley, New York
-
Łuczak, T. (1992) Sparse random graphs with a given degree sequence. In Random Graphs, Vol. 2 (A. M. Frieze and T. Ł, eds), Wiley, New York, 165-182.
-
(1992)
Random Graphs
, vol.2
, pp. 165-182
-
-
Luczak, T.1
-
16
-
-
0002767066
-
Asymptotics for symmetric 0-1 matrices with prescribed row sums
-
McKay, B. D. (1985) Asymptotics for symmetric 0-1 matrices with prescribed row sums. Ars Combinatoria 19A 15-25.
-
(1985)
Ars Combinatoria
, vol.19 A
, pp. 15-25
-
-
McKay, B.D.1
-
18
-
-
84996454498
-
Asymptotic enumeration by degree sequence of graphs of high degree
-
McKay, B. D. and Wormald, N. C. (1990) Asymptotic enumeration by degree sequence of graphs of high degree. Europ. J. Combin. 11 565-580.
-
(1990)
Europ. J. Combin.
, vol.11
, pp. 565-580
-
-
McKay, B.D.1
Wormald, N.C.2
-
19
-
-
0000229634
-
Hamilton circuits in random graphs
-
Pósa, L. (1976) Hamilton circuits in random graphs. Discrete Math. 14 359-364.
-
(1976)
Discrete Math.
, vol.14
, pp. 359-364
-
-
Pósa, L.1
-
20
-
-
84990666040
-
Almost all cubic graphs are Hamiltonian
-
Robinson, R. W. and Wormald, N. C. (1992) Almost all cubic graphs are Hamiltonian. Random Struct. Alg. 3 117-126.
-
(1992)
Random Struct. Alg.
, vol.3
, pp. 117-126
-
-
Robinson, R.W.1
Wormald, N.C.2
-
21
-
-
84990710889
-
Almost all regular graphs are Hamiltonian
-
Robinson, R. W. and Wormald, N. C. (1994) Almost all regular graphs are Hamiltonian. Random Struct. Alg. 5 363-374.
-
(1994)
Random Struct. Alg.
, vol.5
, pp. 363-374
-
-
Robinson, R.W.1
Wormald, N.C.2
-
22
-
-
0000537111
-
Models of random regular graphs
-
(J. D. Lamb and D. A. Preece, eds). Vol. 267 of LMS Lecture Note Series, Cambridge University Press, Cambridge
-
Wormald, N. C. (1999) Models of random regular graphs. In Surveys in Combinatories. Proceedings of the 1999 British Combinatorial Conference (J. D. Lamb and D. A. Preece, eds). Vol. 267 of LMS Lecture Note Series, Cambridge University Press, Cambridge, 239-298.
-
(1999)
Surveys in Combinatories. Proceedings of the 1999 British Combinatorial Conference
, pp. 239-298
-
-
Wormald, N.C.1
|