메뉴 건너뛰기




Volumn 41, Issue 7, 2002, Pages 603-618

On the formal points of the formal topology of the binary tree

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0035981346     PISSN: 09335846     EISSN: None     Source Type: Journal    
DOI: 10.1007/s001530100133     Document Type: Article
Times cited : (3)

References (12)
  • 2
    • 0003798198 scopus 로고
    • [Eng77], Polish Scientific Publisher, Warszawa
    • [Eng77] Engelking, R.: General Topology, Polish Scientific Publisher, Warszawa, 1977
    • (1977) General Topology
    • Engelking, R.1
  • 3
    • 84957001470 scopus 로고    scopus 로고
    • About effective quotients in constructive type theory
    • [Mai99] "Types for Proofs and Programs", Altenkirch, T., Naraschewski, W., Reus, B. eds., Springer Verlag
    • [Mai99] Maietti, M.E.: About effective quotients in constructive type theory in "Types for Proofs and Programs", Altenkirch, T., Naraschewski, W., Reus, B. eds., Lecture Notes in Computer Science 1657, Springer Verlag, 164-178 (1999)
    • (1999) Lecture Notes in Computer Science , vol.1657 , pp. 164-178
    • Maietti, M.E.1
  • 4
    • 0033453769 scopus 로고    scopus 로고
    • Can you add power-set to Martin-Löf intuitionistic set theory?
    • [MV99]
    • [MV99] Maietti, M.E., Valentini, S.: Can you add power-set to Martin-Löf intuitionistic set theory? Mathematical Logic Quarterly 45, 521-532 (1999)
    • (1999) Mathematical Logic Quarterly , vol.45 , pp. 521-532
    • Maietti, M.E.1    Valentini, S.2
  • 8
    • 0039123239 scopus 로고    scopus 로고
    • Building up a tool-box for Martin-Löf intuitionistic type theory
    • [SV98], "Twenty-five years of Constructive Type Theory", Sambin, G., Smith, J. (eds.)
    • [SV98] Sambin, G., Valentini, S.: Building up a tool-box for Martin-Löf intuitionistic type theory, in "Twenty-five years of Constructive Type Theory", Sambin, G., Smith, J. (eds.), Oxford logic guides 36, 221-244 (1998)
    • (1998) Oxford Logic Guides , vol.36 , pp. 221-244
    • Sambin, G.1    Valentini, S.2
  • 9
    • 0030304746 scopus 로고    scopus 로고
    • Decidability in intuitionistic theory of types is functionally decidable
    • [Val96]
    • [Val96] Valentini, S.: Decidability in Intuitionistic Theory of Types is functionally decidable, Mathematical Logic Quarterly 42, 300-304 (1996)
    • (1996) Mathematical Logic Quarterly , vol.42 , pp. 300-304
    • Valentini, S.1
  • 11


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.