-
5
-
-
0001546216
-
-
De Kok P.M.T., Bastiaansen L.A.M., van Lier P.M., Vekemans J.A.J.M., Buck H.M. J. Org. Chem. 54:1989;1313-1320.
-
(1989)
J. Org. Chem.
, vol.54
, pp. 1313-1320
-
-
De Kok, P.M.T.1
Bastiaansen, L.A.M.2
Van Lier, P.M.3
Vekemans, J.A.J.M.4
Buck, H.M.5
-
6
-
-
0034639722
-
-
Mikita Y., Hayashi K., Mizukami K., Matsumoto S., Yano S., Yamazaki N., Ohno A. Tetrahedron Lett. 41:2000;1035-1038.
-
(2000)
Tetrahedron Lett.
, vol.41
, pp. 1035-1038
-
-
Mikita, Y.1
Hayashi, K.2
Mizukami, K.3
Matsumoto, S.4
Yano, S.5
Yamazaki, N.6
Ohno, A.7
-
8
-
-
0002081117
-
-
Bédat J., Levacher V., Dupas G., Queguiner G., Bourguignon J. Chem. Lett. 1996;359-360.
-
(1996)
Chem. Lett.
, pp. 359-360
-
-
Bédat, J.1
Levacher, V.2
Dupas, G.3
Queguiner, G.4
Bourguignon, J.5
-
10
-
-
0343282510
-
-
in press
-
Vitry, C.; Vasse, J.-L.; Levacher, V.; Dupas, G.; Queguiner, G.; Bourguignon, J. Tetrahedron, in press.
-
Tetrahedron
-
-
Vitry, C.1
Vasse, J.-L.2
Levacher, V.3
Dupas, G.4
Queguiner, G.5
Bourguignon, J.6
-
11
-
-
84918109916
-
-
Borsche modification of the Friedlander procedure prevents the formation of by-products due to autocondensation reactions, see: (a)
-
Borsche modification of the Friedlander procedure prevents the formation of by-products due to autocondensation reactions, see: (a) Borsche, W.; Ried, W. Liebigs Ann. Chem. 1943, 554, 269; (b) Borsche, W.; Barthenheier, J. Liebigs Ann. Chem. 1941, 548, 50.
-
(1943)
Liebigs Ann. Chem.
, vol.554
, pp. 269
-
-
Borsche, W.1
Ried, W.2
-
12
-
-
84918064042
-
-
(b)
-
Borsche modification of the Friedlander procedure prevents the formation of by-products due to autocondensation reactions, see: (a) Borsche, W.; Ried, W. Liebigs Ann. Chem. 1943, 554, 269; (b) Borsche, W.; Barthenheier, J. Liebigs Ann. Chem. 1941, 548, 50.
-
(1941)
Liebigs Ann. Chem.
, vol.548
, pp. 50
-
-
Borsche, W.1
Barthenheier, J.2
-
16
-
-
0001722739
-
The Zinin reduction of nitroarenes
-
Porter, H. K. The Zinin reduction of nitroarenes; Org. React. 1973, 20, 455-481.
-
(1973)
Org. React.
, vol.20
, pp. 455-481
-
-
Porter, H.K.1
-
18
-
-
0342847819
-
-
3, 200 MHz). Compound 2: δ 0.84 (3H, t, J=7.0 Hz), 1.92-2.42 (4H, m), 2.78-2.95 (2H, m), 3.03 (3H, s), 3.32 (1H, six, J=7.0 Hz), 3.58 (1H, d, J =18.0 Hz), 3.82 (1H, six, J=7.0 Hz), 3.86 (3H, s), 3.90 (3H, s), 4.35 (1H, d, J=18.0 Hz), 4.67 (1H, dd, J=7.0 Hz, J=3.8 Hz), 6.55 (1H, s), 6.68 (1H, s), 7.12-7.22 (3H, m). Compound 6: δ 1.04 (3H, t, J=7.0 Hz), 2.08 (2H, m), 2.35 (2H, m), 2.86-3.03 (2H, m), 3.57 (1H, quint, J=7.0 Hz,) 3.84 (1H, quint, J=7.0 Hz), 4.07 (3H, s), 4.21 (3H, s), 4.41 (3H, s), 4.93 (1H, m), 7.36 (1H, s), 7.37-7.44 (4H, m), 7.61 (1H, s), 9.10 (1H, s). Compound 5: δ 1.07 (3H, t, J=7.0 Hz), 1.90-2.15 (3H, m), 2.36 (1H, m), 2.70-2.82 (1H, m), 2.92-3.05 (1H, dt, J=17.0, 3.5 Hz), 3.55 (1H, six, J=7.0 Hz), 4.00 (1H, six, J=7.0 Hz), 4.02 (3H, s), 4.04 (3H, s), 4.86 (1H, m), 7.13 (1H, s), 7.20 (1H, d, J=7.5 Hz), 7.38 (1H, t, J=7.5 Hz), 7.96 (1H, d, J=7.5 Hz), 8.62 (1H, s).
-
3, 200 MHz). Compound 2: δ 0.84 (3H, t, J=7.0 Hz), 1.92-2.42 (4H, m), 2.78-2.95 (2H, m), 3.03 (3H, s), 3.32 (1H, six, J=7.0 Hz), 3.58 (1H, d, J =18.0 Hz), 3.82 (1H, six, J=7.0 Hz), 3.86 (3H, s), 3.90 (3H, s), 4.35 (1H, d, J=18.0 Hz), 4.67 (1H, dd, J=7.0 Hz, J=3.8 Hz), 6.55 (1H, s), 6.68 (1H, s), 7.12-7.22 (3H, m). Compound 6: δ 1.04 (3H, t, J=7.0 Hz), 2.08 (2H, m), 2.35 (2H, m), 2.86-3.03 (2H, m), 3.57 (1H, quint, J=7.0 Hz,) 3.84 (1H, quint, J=7.0 Hz), 4.07 (3H, s), 4.21 (3H, s), 4.41 (3H, s), 4.93 (1H, m), 7.36 (1H, s), 7.37-7.44 (4H, m), 7.61 (1H, s), 9.10 (1H, s). Compound 5: δ 1.07 (3H, t, J=7.0 Hz), 1.90-2.15 (3H, m), 2.36 (1H, m), 2.70-2.82 (1H, m), 2.92-3.05 (1H, dt, J=17.0, 3.5 Hz), 3.55 (1H, six, J=7.0 Hz), 4.00 (1H, six, J=7.0 Hz), 4.02 (3H, s), 4.04 (3H, s), 4.86 (1H, m), 7.13 (1H, s), 7.20 (1H, d, J=7.5 Hz), 7.38 (1H, t, J=7.5 Hz), 7.96 (1H, d, J=7.5 Hz), 8.62 (1H, s).
-
-
-
-
19
-
-
0342412854
-
-
Molecular mechanics (MM2) and MOPAC (PM3) program led to the same conformation.
-
Molecular mechanics (MM2) and MOPAC (PM3) program led to the same conformation.
-
-
-
-
20
-
-
0342412855
-
-
note
-
2O/cyclohexane:2/1). Yield: 89%. Enantiomeric excesses were determined by HPLC analysis using a Chiracel OD column (250×4.6 mm, 10 μm). Chromatographic conditions: injection: 20 μL (0.5 mg of methyl mandelate in 10 mL of hexane). Eluent: hexane/2-propanol: 90/10. Flow rate: 1 mL/min. Pressure: 300 psi. Temperature: 22°C. UV detection: λ=235 nm. Retention time: 9.2 min [(S)-enantiomer] and 14.8 min [(R)-enantiomer]. Enantiomeric excess: 92% (S).
-
-
-
|