-
1
-
-
85120225584
-
-
J. Hadamard, Lectures on Cauchy's Problem in Linear Partial Differential Equations, 1956
-
-
-
-
2
-
-
85120231988
-
-
K. Feng, D. Yu, Canonical integral equations of elliptic boundary value problems and their numerical solutions, in: Proceedings of China–France Symposium on FEM, Science Press, Beijing, 1983, pp. 211–252
-
-
-
-
3
-
-
85120210012
-
-
K. Feng, Finite element method and natural boundary reduction, in: Proceedings of the International Congress of Mathematicians, Warszawa, 1983, pp. 1439–1453
-
-
-
-
4
-
-
85120227802
-
-
D.Yu, Mathematical theory of natural boundary element methods, Science Press, Beijing, 1993 (in Chinese)
-
-
-
-
5
-
-
0030352475
-
Trigonometric wavelets for Hermite interpolation
-
E. Quak Trigonometric wavelets for Hermite interpolation Math. Comput. 65 1996 683 722
-
(1996)
Math. Comput.
, vol.65
, pp. 683-722
-
-
Quak, E.1
-
6
-
-
0040108155
-
On an orthogonal trigonometric basis
-
A.A. Privalov On an orthogonal trigonometric basis Mat. Sbornik 182 3 1991 384 394
-
(1991)
Mat. Sbornik
, vol.182
, Issue.3
, pp. 384-394
-
-
Privalov, A.A.1
-
7
-
-
85120238096
-
-
Y.W. Koh, S.L. Lee, H.H. Tan, Periodic orthogonal splines and wavelets, Appl. Comput. Harmonic Anal. 2 (1995) 201–218 (CMP 95:15)
-
-
-
-
8
-
-
85120217822
-
-
J.L. Lions E. Magenes Non-Homogeneous Boundary Value Problems and Applications 1972 Springer Berlin
-
(1972)
-
-
Lions, J.L.1
Magenes, E.2
-
9
-
-
85120201219
-
-
W.S. Chen, W. Lin, Hadamard singular integral equations and its Hermite wavelet methods, in: J. Kajiwara, Z. Li, S. Wu, L. Yang (Eds.), Proceedings of the Fifth International Colloquium on Finite or Infinite Dimensional Complex Analysis, Beijing, China, 1997, pp. 13–22
-
-
-
-
10
-
-
85120235073
-
-
R. Glowinski, W. Lawton, M. Ravachol, E. Tenenbaum, Wavelets solution of linear and nonlinear elliptic, parabolic and hyperbolic problems in one space dimension, Comput. Meth. Appl. Sci. Eng. (1990) 55–120
-
-
-
-
11
-
-
21144465044
-
Galerkin–Wavelet methods for two-point boundary value problems
-
J. Xu W. Shann Galerkin–Wavelet methods for two-point boundary value problems Numer. Math. 63 1992 123 144
-
(1992)
Numer. Math.
, vol.63
, pp. 123-144
-
-
Xu, J.1
Shann, W.2
-
12
-
-
0000139676
-
A class of bases in L2 for the sparse representation of integral operators
-
2 for the sparse representation of integral operators SIAM J. Math. Anal. 24 1993 246 262
-
(1993)
SIAM J. Math. Anal.
, vol.24
, pp. 246-262
-
-
Alpert, B.K.1
-
13
-
-
21844515556
-
Wavelet solutions for the Dirichlet problem
-
R.O. Wells Jr. X. Zhon Wavelet solutions for the Dirichlet problem Numer. Math. 70 1995 379 396
-
(1995)
Numer. Math.
, vol.70
, pp. 379-396
-
-
Wells, R.O.1
Zhon, X.2
-
14
-
-
0442273463
-
Degenerate kernel schemes by wavelets for nonlinear integral equations on the real line
-
Z. Shen Y. Xu Degenerate kernel schemes by wavelets for nonlinear integral equations on the real line Appl. Anal. 59 1995 163 184
-
(1995)
Appl. Anal.
, vol.59
, pp. 163-184
-
-
Shen, Z.1
Xu, Y.2
-
15
-
-
0030496223
-
Wavelet approximations for first kind boundary integral equations on polygons
-
T.V. Petersdorff C. Schwab Wavelet approximations for first kind boundary integral equations on polygons Numer. Math. 74 1996 479 519
-
(1996)
Numer. Math.
, vol.74
, pp. 479-519
-
-
Petersdorff, T.V.1
Schwab, C.2
|