-
3
-
-
0032476812
-
-
(c) Mammen, M.; Choi, S.-K.; Whitesides, G. M. Angew. Chem., Int. Ed. 1998, 37, 2754-2794.
-
(1998)
Angew. Chem., Int. Ed.
, vol.37
, pp. 2754-2794
-
-
Mammen, M.1
Choi, S.-K.2
Whitesides, G.M.3
-
13
-
-
0029739240
-
-
Review: (a) Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem., Int. Ed. Engl. 1996, 35, 1380-1419. For C2-nitrogen substituents, see:
-
(1996)
Angew. Chem., Int. Ed. Engl.
, vol.35
, pp. 1380-1419
-
-
Danishefsky, S.J.1
Bilodeau, M.T.2
-
15
-
-
0001745139
-
-
(c) Leblanc, Y.; Fitzsimmons, B. J.; Springer, J. P.; Rokach, J. J. Am. Chem. Soc. 1989, 111, 2995-3000.
-
(1989)
J. Am. Chem. Soc.
, vol.111
, pp. 2995-3000
-
-
Leblanc, Y.1
Fitzsimmons, B.J.2
Springer, J.P.3
Rokach, J.4
-
18
-
-
0030934796
-
-
(f) Rubinstenn, G.; Esnault, J.; Mallet, J.-M.; Sinaÿ, P. Tetrahedron: Asymmetry 1997, 8, 1327-1336.
-
(1997)
Tetrahedron: Asymmetry
, vol.8
, pp. 1327-1336
-
-
Rubinstenn, G.1
Esnault, J.2
Mallet, J.-M.3
Sinaÿ, P.4
-
19
-
-
0030912722
-
-
(g) Du Bois, J.; Tomooka, C. S.; Hong, J.; Carreira, E. M. J. Am. Chem. Soc. 1997, 119, 3179-3180.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 3179-3180
-
-
Du Bois, J.1
Tomooka, C.S.2
Hong, J.3
Carreira, E.M.4
-
21
-
-
0034598487
-
-
(i) Di Bussolo, V.; Liu, J.; Huffman, L. G. Angew. Chem. Int. Ed. 2000, 39, 204-207.
-
(2000)
Angew. Chem. Int. Ed.
, vol.39
, pp. 204-207
-
-
Di Bussolo, V.1
Liu, J.2
Huffman, L.G.3
-
22
-
-
0034679468
-
-
(j) Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Vega, J. A. Angew. Chem. Int. Ed. 2000, 39, 2525-2529. For C2-halo-substituents, see:
-
(2000)
Angew. Chem. Int. Ed.
, vol.39
, pp. 2525-2529
-
-
Nicolaou, K.C.1
Baran, P.S.2
Zhong, Y.-L.3
Vega, J.A.4
-
24
-
-
0017470253
-
-
(l) Tatsuta, K.; Fujimoto, K.; Kinoshita, M.; Umezawa, S. Carbohydr. Res. 1977, 54, 85-104.
-
(1977)
Carbohydr. Res.
, vol.54
, pp. 85-104
-
-
Tatsuta, K.1
Fujimoto, K.2
Kinoshita, M.3
Umezawa, S.4
-
26
-
-
0031465387
-
-
(n) Burkart, M. D.; Zhang, Z.; Hung, S.-C.; Wong, C.-H. J. Am. Chem. Soc. 1997, 119, 11743-11746. For C2-sulfur/selenium substituents, see:
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 11743-11746
-
-
Burkart, M.D.1
Zhang, Z.2
Hung, S.-C.3
Wong, C.-H.4
-
27
-
-
37049111829
-
-
(o) Jaurand, G.; Beau, J.-M.; Sinaÿ, P. J. Chem. Soc., Chem. Commun. 1981, 572-573.
-
(1981)
J. Chem. Soc., Chem. Commun.
, pp. 572-573
-
-
Jaurand, G.1
Beau, J.-M.2
Sinaÿ, P.3
-
31
-
-
0001443980
-
-
(s) Grewal, G.; Kaila, N.; Franck, R. W. J. Org. Chem. 1992, 57, 2084-2092.
-
(1992)
J. Org. Chem.
, vol.57
, pp. 2084-2092
-
-
Grewal, G.1
Kaila, N.2
Franck, R.W.3
-
32
-
-
0030843605
-
-
(t) Roush, W. R.; Sebesta, D. P.; James, R. A. Tetrahedron 1997, 53, 8837-8852. For C2-carbon substituents, see:
-
(1997)
Tetrahedron
, vol.53
, pp. 8837-8852
-
-
Roush, W.R.1
Sebesta, D.P.2
James, R.A.3
-
33
-
-
0030778538
-
-
(u) Linker, T.; Sommermann, T.; Kahlenberg, F. J. Am. Chem. Soc. 1997, 119, 9377-9384.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 9377-9384
-
-
Linker, T.1
Sommermann, T.2
Kahlenberg, F.3
-
35
-
-
0001094662
-
-
Dwek, R. A. Chem. Rev. 1996, 96, 683-720.
-
(1996)
Chem. Rev.
, vol.96
, pp. 683-720
-
-
Dwek, R.A.1
-
36
-
-
0030662091
-
-
Seeberger, P. H.; Eckhardt, M.; Gutteridge, C. E.; Danishefsky, S. J. J. Am. Chem. Soc. 1997, 119, 10064-10072.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 10064-10072
-
-
Seeberger, P.H.1
Eckhardt, M.2
Gutteridge, C.E.3
Danishefsky, S.J.4
-
37
-
-
0032583443
-
-
Di Bussolo, V.; Kim, Y.-J.; Gin, D. Y. J. Am. Chem. Soc. 1998, 120, 13515-13516.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 13515-13516
-
-
Di Bussolo, V.1
Kim, Y.-J.2
Gin, D.Y.3
-
38
-
-
0041622269
-
-
It is unclear whether the activated sulfoxide intermediate 8 exists/ reacts as a sulfonium species or a σ-sulfurane species
-
It is unclear whether the activated sulfoxide intermediate 8 exists/ reacts as a sulfonium species or a σ-sulfurane species.
-
-
-
-
39
-
-
0043125102
-
-
The use of excess DBTO served to minimize the formation of the unwanted byproduct 15, presumably a result of increased stabilization of the putative oxocarbenium intermediate arising from glycal activation (i.e., 9 → 10)
-
The use of excess DBTO served to minimize the formation of the unwanted byproduct 15, presumably a result of increased stabilization of the putative oxocarbenium intermediate arising from glycal activation (i.e., 9 → 10).
-
-
-
-
40
-
-
0042123108
-
-
The corresponding benzylsulfilimine derivative 17 was also isolated as a byproduct, which is consistent with the presumed acceptor-induced epoxide ring closure in Scheme 4
-
The corresponding benzylsulfilimine derivative 17 was also isolated as a byproduct, which is consistent with the presumed acceptor-induced epoxide ring closure in Scheme 4.
-
-
-
-
41
-
-
0042123107
-
-
note
-
-), which assumes a sterically favorable α-approach onto the glucal (i.e., trans to the C(3)-substituent), leading to a net transfer of oxygen to the β-face of the glucal (Scheme 4). Attempts to identify the putative intermediates 9 and/or 10 are underway to gain insight into the validity of such a hypothesis.
-
-
-
-
42
-
-
0042624216
-
-
In these reactions, 0.5 equiv of 2,4,6-tri-tert-butylpyridine can be introduced at the outset of the reaction to neutralize trace amounts of triflic acid that could potentially lead to unproductive glucal decomposition
-
In these reactions, 0.5 equiv of 2,4,6-tri-tert-butylpyridine can be introduced at the outset of the reaction to neutralize trace amounts of triflic acid that could potentially lead to unproductive glucal decomposition.
-
-
-
-
43
-
-
0043125101
-
-
For the oxidative glycosylation of allyl alcohol with 3,4-di-O-benzyl-6-O-triisopropylsilyl-D-glucal, 7% of the corresponding 2-hydroxy-β-D-glucopyranoside was also isolated
-
For the oxidative glycosylation of allyl alcohol with 3,4-di-O-benzyl-6-O-triisopropylsilyl-D-glucal, 7% of the corresponding 2-hydroxy-β-D-glucopyranoside was also isolated.
-
-
-
-
44
-
-
0041622270
-
-
Although fairly unhindered secondary alcohols can be oxidatively mannosylated with this procedure, more hindered secondary alcohol acceptors, such as methyl 2,3,6-tri-O-benzyl-D-glucopyranose, were ineffective, presumably a result of inefficient addition of the nucleophile to the putative oxosulfonium salt 10 in the epoxide ring closure step. Efforts are currently underway to develop a procedure for the mannosylation of hindered acceptors by introducing a sacrificial nucleophile to form the intermediate anhydropyranoside prior to epoxide opening with the desired acceptor
-
Although fairly unhindered secondary alcohols can be oxidatively mannosylated with this procedure, more hindered secondary alcohol acceptors, such as methyl 2,3,6-tri-O-benzyl-D-glucopyranose, were ineffective, presumably a result of inefficient addition of the nucleophile to the putative oxosulfonium salt 10 in the epoxide ring closure step. Efforts are currently underway to develop a procedure for the mannosylation of hindered acceptors by introducing a sacrificial nucleophile to form the intermediate anhydropyranoside prior to epoxide opening with the desired acceptor.
-
-
-
-
45
-
-
0042624275
-
-
The excess carbohydrate acceptor can be recovered at the end of the reaction
-
The excess carbohydrate acceptor can be recovered at the end of the reaction.
-
-
-
|