메뉴 건너뛰기




Volumn 48, Issue 4, 2001, Pages 633-638

Amplification of the intracavity field in a strongly coupled atom-cavity system driven by a strong resonant pulse

Author keywords

[No Author keywords available]

Indexed keywords

AMPLIFICATION; NUMERICAL METHODS; QUANTUM ELECTRONICS; QUANTUM THEORY;

EID: 0035917288     PISSN: 09500340     EISSN: 13623044     Source Type: Journal    
DOI: 10.1080/09500340108230937     Document Type: Article
Times cited : (1)

References (23)
  • 2
    • 77956974568 scopus 로고
    • Wolf E., (ed), Amsterdam: North-Holland
    • Meystre, P., 1992. Progress in Optics, Edited by:Wolf, E., Vol. XXX, 261Amsterdam:North-Holland.
    • (1992) Progress in Optics , vol.XXX , pp. 261
    • Meystre, P.1
  • 14
    • 0002704357 scopus 로고
    • Wolf E., (ed), Amsterdam: North-Holland, See, for example
    • Lugiato, L. A., 1984. Progress in Optics, Edited by:Wolf, E., Vol. XXI, 71Amsterdam:North-Holland. See, for example
    • (1984) Progress in Optics , vol.XXI , pp. 71
    • Lugiato, L.A.1
  • 15
    • 0011769132 scopus 로고
    • Wolf E., (ed), Amsterdam: North-Holland, See, for example
    • Eglund, J. C., Snapp, R. R., and Schieve, W. C., 1984. Progress in Optics, Edited by:Wolf, E., Vol. XXI, 357Amsterdam:North-Holland. See, for example
    • (1984) Progress in Optics , vol.XXI , pp. 357
    • Eglund, J.C.1    Snapp, R.R.2    Schieve, W.C.3
  • 16
    • 0003851731 scopus 로고
    • Washington, DC: National Bureau of Standards, Note that if u(z) is the solution of the Mathieu equation with q > 0 then u[(π/2)–z] is the solution of the Mathieu equation with q < 0. See, for example Chap. 20, 20.8.1
    • Abramowitz, M., and Stegun, J. A., eds. 1964. Handbook of Mathematical Functions, Applied Mathematics Series 55 Washington, DC:National Bureau of Standards. Note that if u(z) is the solution of the Mathieu equation with q > 0 then u[(π/2)–z] is the solution of the Mathieu equation with q < 0. See, for example Chap. 20, 20.8.1
    • (1964) Handbook of Mathematical Functions
    • Abramowitz, M.1    Stegun, J.A.2
  • 18
    • 0004270407 scopus 로고
    • Oxford: Pergamon Press, See, for example, the general solution for the parametric resonance in
    • Landau, L. D., and Lifschitz, E. M., 1989. Mechanics, Oxford:Pergamon Press. See, for example, the general solution for the parametric resonance in
    • (1989) Mechanics
    • Landau, L.D.1    Lifschitz, E.M.2
  • 20
    • 0003851731 scopus 로고
    • 1 (odd solution) in figure 20.1 of Chap. 20. Note that the instability of the parametric resonance corresponds to the same region of instability as the region about the point of the intersection of the a axis (the point a = 1) and two curves b1 (odd solution) and a1 (even solution). Therefore the solution for the instability of the parametric resonance contains a sum of odd and even harmonics
    • 1 (odd solution) in figure 20.1 of Chap. 20. Note that the instability of the parametric resonance corresponds to the same region of instability as the region about the point of the intersection of the a axis (the point a = 1) and two curves b1 (odd solution) and a1 (even solution). Therefore the solution for the instability of the parametric resonance contains a sum of odd and even harmonics
    • (1964) Handbook of Mathematical Functions
    • Abramowitz, M.1    Stegun, J.A.2
  • 21
    • 0003980627 scopus 로고
    • New York: Academic, Chap. 5
    • Boyd, R. W., 1992. Nonlinear Optics, New York:Academic. Chap. 5
    • (1992) Nonlinear Optics
    • Boyd, R.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.