-
2
-
-
77956974568
-
-
Wolf E., (ed), Amsterdam: North-Holland
-
Meystre, P., 1992. Progress in Optics, Edited by:Wolf, E., Vol. XXX, 261Amsterdam:North-Holland.
-
(1992)
Progress in Optics
, vol.XXX
, pp. 261
-
-
Meystre, P.1
-
5
-
-
0001489676
-
-
Hullet, R. G., Hilter, E. S., and Kleppner, D., 1985. Phys. Rev. Lett., 55:2137
-
(1985)
Phys. Rev. Lett.
, vol.55
, pp. 2137
-
-
Hullet, R.G.1
Hilter, E.S.2
Kleppner, D.3
-
6
-
-
0001528686
-
-
Jhe, W., Anderson, A., Hinds, E. H., Meschede, D., Moi, L., and Haroche, S., 1987. Phys. Rev. Lett., 56:666
-
(1987)
Phys. Rev. Lett.
, vol.56
, pp. 666
-
-
Jhe, W.1
Anderson, A.2
Hinds, E.H.3
Meschede, D.4
Moi, L.5
Haroche, S.6
-
7
-
-
35949014396
-
-
De Martini, F., Jnnocenti, G., Jacobovicz, G. R., and Matalonia, P., 1987. Phys. Rev. Lett., 59:2955
-
(1987)
Phys. Rev. Lett.
, vol.59
, pp. 2955
-
-
De Martini, F.1
Jnnocenti, G.2
Jacobovicz, G.R.3
Matalonia, P.4
-
8
-
-
0001309782
-
-
Heinzen, D. J., Childs, J. J., Thomas, J. E., and Feld, M. S., 1987. Phys. Rev., Lett., 58:1320
-
(1987)
Phys. Rev., Lett.
, vol.58
, pp. 1320
-
-
Heinzen, D.J.1
Childs, J.J.2
Thomas, J.E.3
Feld, M.S.4
-
9
-
-
0000367237
-
-
Kaluzny, Y., Goy, P., Gross, M., Raimond, J. M., and Haroche, S., 1983. Phys. Rev. Lett., 51:1175
-
(1983)
Phys. Rev. Lett.
, vol.51
, pp. 1175
-
-
Kaluzny, Y.1
Goy, P.2
Gross, M.3
Raimond, J.M.4
Haroche, S.5
-
10
-
-
3843049908
-
-
Raizen, M. G., Thompson, R. J., Brecha, R. J., Kimble, H. J., and Carmichael, H. J., 1989. Phys. Rev. Lett., 63:240
-
(1989)
Phys. Rev. Lett.
, vol.63
, pp. 240
-
-
Raizen, M.G.1
Thompson, R.J.2
Brecha, R.J.3
Kimble, H.J.4
Carmichael, H.J.5
-
11
-
-
0032048343
-
-
Thompson, R. J., Turchette, Q. A., Carnal, O., and Kimble, H. J., 1998. Phys. Rev. A, 57:3084
-
(1998)
Phys. Rev. A
, vol.57
, pp. 3084
-
-
Thompson, R.J.1
Turchette, Q.A.2
Carnal, O.3
Kimble, H.J.4
-
12
-
-
0001508402
-
-
Alsing, P. M., Cardimona, D. A., and Carmichael, H. J., 1992. Phys. Rev. A, 45:1793
-
(1992)
Phys. Rev. A
, vol.45
, pp. 1793
-
-
Alsing, P.M.1
Cardimona, D.A.2
Carmichael, H.J.3
-
13
-
-
0011711881
-
-
Cardimona, D. A., Koch, K., and Alsing, P. M., 1997. Phys. Rev. A, 55:787
-
(1997)
Phys. Rev. A
, vol.55
, pp. 787
-
-
Cardimona, D.A.1
Koch, K.2
Alsing, P.M.3
-
14
-
-
0002704357
-
-
Wolf E., (ed), Amsterdam: North-Holland, See, for example
-
Lugiato, L. A., 1984. Progress in Optics, Edited by:Wolf, E., Vol. XXI, 71Amsterdam:North-Holland. See, for example
-
(1984)
Progress in Optics
, vol.XXI
, pp. 71
-
-
Lugiato, L.A.1
-
15
-
-
0011769132
-
-
Wolf E., (ed), Amsterdam: North-Holland, See, for example
-
Eglund, J. C., Snapp, R. R., and Schieve, W. C., 1984. Progress in Optics, Edited by:Wolf, E., Vol. XXI, 357Amsterdam:North-Holland. See, for example
-
(1984)
Progress in Optics
, vol.XXI
, pp. 357
-
-
Eglund, J.C.1
Snapp, R.R.2
Schieve, W.C.3
-
16
-
-
0003851731
-
-
Washington, DC: National Bureau of Standards, Note that if u(z) is the solution of the Mathieu equation with q > 0 then u[(π/2)–z] is the solution of the Mathieu equation with q < 0. See, for example Chap. 20, 20.8.1
-
Abramowitz, M., and Stegun, J. A., eds. 1964. Handbook of Mathematical Functions, Applied Mathematics Series 55 Washington, DC:National Bureau of Standards. Note that if u(z) is the solution of the Mathieu equation with q > 0 then u[(π/2)–z] is the solution of the Mathieu equation with q < 0. See, for example Chap. 20, 20.8.1
-
(1964)
Handbook of Mathematical Functions
-
-
Abramowitz, M.1
Stegun, J.A.2
-
17
-
-
0003952728
-
-
New York: McGraw-Hill, Part 1 Chap. 5, equation (5.2.76)
-
Morse, P. M., and Feshbach, H., Methods of Theoretical Physics, New York:McGraw-Hill. Part 1 Chap. 5, equation (5.2.76)
-
Methods of Theoretical Physics
-
-
Morse, P.M.1
Feshbach, H.2
-
18
-
-
0004270407
-
-
Oxford: Pergamon Press, See, for example, the general solution for the parametric resonance in
-
Landau, L. D., and Lifschitz, E. M., 1989. Mechanics, Oxford:Pergamon Press. See, for example, the general solution for the parametric resonance in
-
(1989)
Mechanics
-
-
Landau, L.D.1
Lifschitz, E.M.2
-
19
-
-
0003851731
-
-
Washington, DC: National Bureau of Standards, Chap. 20
-
Abramowitz, M., and Stegun, J. A., eds. 1964. Handbook of Mathematical Functions, Applied Mathematics Series 55 Washington, DC:National Bureau of Standards. Chap. 20
-
(1964)
Handbook of Mathematical Functions
-
-
Abramowitz, M.1
Stegun, J.A.2
-
20
-
-
0003851731
-
-
1 (odd solution) in figure 20.1 of Chap. 20. Note that the instability of the parametric resonance corresponds to the same region of instability as the region about the point of the intersection of the a axis (the point a = 1) and two curves b1 (odd solution) and a1 (even solution). Therefore the solution for the instability of the parametric resonance contains a sum of odd and even harmonics
-
1 (odd solution) in figure 20.1 of Chap. 20. Note that the instability of the parametric resonance corresponds to the same region of instability as the region about the point of the intersection of the a axis (the point a = 1) and two curves b1 (odd solution) and a1 (even solution). Therefore the solution for the instability of the parametric resonance contains a sum of odd and even harmonics
-
(1964)
Handbook of Mathematical Functions
-
-
Abramowitz, M.1
Stegun, J.A.2
-
21
-
-
0003980627
-
-
New York: Academic, Chap. 5
-
Boyd, R. W., 1992. Nonlinear Optics, New York:Academic. Chap. 5
-
(1992)
Nonlinear Optics
-
-
Boyd, R.W.1
|