메뉴 건너뛰기




Volumn 171, Issue 1, 2001, Pages 88-109

On singularly perturbed retarded functional differential equations

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0035917081     PISSN: 00220396     EISSN: None     Source Type: Journal    
DOI: 10.1006/jdeq.2000.3840     Document Type: Article
Times cited : (21)

References (39)
  • 1
    • 0007110738 scopus 로고    scopus 로고
    • Singularly perturbed ordinary differential equations with nonautonomous fast dynamics
    • 1. Z. Artstein, Singularly perturbed ordinary differential equations with nonautonomous fast dynamics, J. Dynam. Differential Equations 11 (1999), 297-318.
    • (1999) J. Dynam. Differential Equations , vol.11 , pp. 297-318
    • Artstein, Z.1
  • 2
    • 0033095583 scopus 로고    scopus 로고
    • Invariant measures of differential inclusions applied to singular perturbations
    • 2. Z. Artstein, Invariant measures of differential inclusions applied to singular perturbations, J. Differential Equations 152 (1999), 289-307.
    • (1999) J. Differential Equations , vol.152 , pp. 289-307
    • Artstein, Z.1
  • 3
    • 0012227045 scopus 로고    scopus 로고
    • Singularly perturbed ordinary differential equations with dynamic limits
    • 3. Z. Artstein and A. Vigodner, Singularly perturbed ordinary differential equations with dynamic limits, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 541-569.
    • (1996) Proc. Roy. Soc. Edinburgh Sect. A , vol.126 , pp. 541-569
    • Artstein, Z.1    Vigodner, A.2
  • 6
    • 0001271066 scopus 로고
    • Forced oscillations for the sunflower equation, entrainment
    • 6. A. Casal and A. Somolinos, Forced oscillations for the sunflower equation, entrainment, Nonlinear Anal. 6 (1982), 397-414.
    • (1982) Nonlinear Anal. , vol.6 , pp. 397-414
    • Casal, A.1    Somolinos, A.2
  • 7
    • 0001254654 scopus 로고
    • Singular perturbation problems for a system of differential-difference equations, I
    • 7. S.-N. Chow and W. Z. Huang, Singular perturbation problems for a system of differential-difference equations, I, J. Differential Equations 112 (1994), 257-307.
    • (1994) J. Differential Equations , vol.112 , pp. 257-307
    • Chow, S.-N.1    Huang, W.Z.2
  • 8
    • 0002087132 scopus 로고
    • The condition of regular degeneration for singularly perturbed linear differential-difference equations
    • 8. K. L. Cooke, The condition of regular degeneration for singularly perturbed linear differential-difference equations, J. Differential Equations 1 (1965), 39-94.
    • (1965) J. Differential Equations , vol.1 , pp. 39-94
    • Cooke, K.L.1
  • 9
    • 0007115567 scopus 로고
    • The condition of regular degeneration for singularly perturbed systems of linear differential-difference equations
    • 9. K. L. Cooke and K. R. Meyer, The condition of regular degeneration for singularly perturbed systems of linear differential-difference equations, J. Math. Anal. Appl. 14 (1966), 83-106.
    • (1966) J. Math. Anal. Appl. , vol.14 , pp. 83-106
    • Cooke, K.L.1    Meyer, K.R.2
  • 11
    • 0007115569 scopus 로고
    • Singularly perturbed functional-differential inclusions
    • 11. T. Donchev and I. Slavov, Singularly perturbed functional-differential inclusions, Set-Valued Anal. 3 (1995), 113-128.
    • (1995) Set-Valued Anal. , vol.3 , pp. 113-128
    • Donchev, T.1    Slavov, I.2
  • 12
    • 0007108481 scopus 로고
    • Tikhonov's theorem for functional-differential inclusions
    • 12. T. Donchev and I. Slavov, Tikhonov's theorem for functional-differential inclusions, Annu. Univ. Sofia Fac. Math. Inform. 89, No. 1 (1995).
    • (1995) Annu. Univ. Sofia Fac. Math. Inform. , vol.89 , Issue.1
    • Donchev, T.1    Slavov, I.2
  • 13
  • 16
    • 0001944785 scopus 로고
    • Period doubling in singularly perturbed delay equations
    • 16. J. K. Hale and W. Z. Huang, Period doubling in singularly perturbed delay equations, J. Differential Equations 114 (1994), 1-23
    • (1994) J. Differential Equations , vol.114 , pp. 1-23
    • Hale, J.K.1    Huang, W.Z.2
  • 17
    • 85031481056 scopus 로고
    • An example of boundary layer in delay equations
    • K. B. Hannsgen et al., Eds., Dekker, New York
    • 17. J. K. Hale and L. T. Magalhães, An example of boundary layer in delay equations, in "Volterra and Functional Differential Equations" (K. B. Hannsgen et al., Eds.), pp. 45-49, Dekker, New York, 1982.
    • (1982) Volterra and Functional Differential Equations , pp. 45-49
    • Hale, J.K.1    Magalhães, L.T.2
  • 18
    • 0020148076 scopus 로고
    • Singular perturbation analysis of boundary value problems for differential-difference equations
    • 18. C. Lange and R. M. Miura, Singular perturbation analysis of boundary value problems for differential-difference equations, SIAM J. Appl. Math. 42 (1982), 502-531.
    • (1982) SIAM J. Appl. Math. , vol.42 , pp. 502-531
    • Lange, C.1    Miura, R.M.2
  • 19
    • 0022145694 scopus 로고
    • Singular perturbation analysis of boundary value problems for differential-difference equations. II. Rapid oscillations and resonances
    • 19. C. Lange and R. M. Miura, Singular perturbation analysis of boundary value problems for differential-difference equations. II. Rapid oscillations and resonances, SIAM J. Appl. Math. 45 (1985), 687-707.
    • (1985) SIAM J. Appl. Math. , vol.45 , pp. 687-707
    • Lange, C.1    Miura, R.M.2
  • 20
    • 0022145846 scopus 로고
    • Singular perturbation analysis of boundary value problems for differential-difference equations. III. Turning point problems
    • 20. C. Lange and R. M. Miura, Singular perturbation analysis of boundary value problems for differential-difference equations. III. Turning point problems, SIAM J. Appl. Math. 45 (1985), 708-734.
    • (1985) SIAM J. Appl. Math. , vol.45 , pp. 708-734
    • Lange, C.1    Miura, R.M.2
  • 21
    • 0007060922 scopus 로고
    • Singular perturbation analysis of boundary value problems for differential-difference equations. IV. A nonlinear example with layer behavior
    • 21. C. Lange and R. M. Miura, Singular perturbation analysis of boundary value problems for differential-difference equations. IV. A nonlinear example with layer behavior, Stud. Appl. Math. 84, No. 3 (1991), 231-273.
    • (1991) Stud. Appl. Math. , vol.84 , Issue.3 , pp. 231-273
    • Lange, C.1    Miura, R.M.2
  • 22
    • 0028369618 scopus 로고
    • Singular perturbation analysis of boundary value problems for differential-difference equations. V. Small shifts with layer behavior
    • 22. C. Lange and R. M. Miura, Singular perturbation analysis of boundary value problems for differential-difference equations. V. Small shifts with layer behavior, SIAM J. Appl. Math. 54 (1994), 249-272.
    • (1994) SIAM J. Appl. Math. , vol.54 , pp. 249-272
    • Lange, C.1    Miura, R.M.2
  • 23
    • 0028370364 scopus 로고
    • Singular perturbation analysis of boundary value problems for differential-difference equations. VI. Small shifts with rapid oscillations
    • 23. C. Lange and R. M. Miura, Singular perturbation analysis of boundary value problems for differential-difference equations. VI. Small shifts with rapid oscillations, SIAM J. Appl. Math. 54 (1994), 273-283.
    • (1994) SIAM J. Appl. Math. , vol.54 , pp. 273-283
    • Lange, C.1    Miura, R.M.2
  • 24
    • 0007060923 scopus 로고
    • Convergence and boundary layers in singularly perturbed linear functional-differential equations
    • 24. L. T. Magalhães, Convergence and boundary layers in singularly perturbed linear functional-differential equations, J. Differential Equations 54 (1984), 295-309.
    • (1984) J. Differential Equations , vol.54 , pp. 295-309
    • Magalhães, L.T.1
  • 25
    • 51249170529 scopus 로고
    • Boundary layer phenomena for differential-delay equations with state-dependent time lags, I
    • 25. J. Mallet-Paret and R. D. Nussbaum, Boundary layer phenomena for differential-delay equations with state-dependent time lags, I, Arch. Rational Mech. Anal. 120 (1992), 99-146.
    • (1992) Arch. Rational Mech. Anal. , vol.120 , pp. 99-146
    • Mallet-Paret, J.1    Nussbaum, R.D.2
  • 26
    • 21444453228 scopus 로고    scopus 로고
    • Boundary layer phenomena for differential-delay equations with state dependent time lags, II
    • 26. J. Mallet-Paret and R. D. Nussbaum, Boundary layer phenomena for differential-delay equations with state dependent time lags, II, J. Reine Angew. Math. 477 (1996), 129-197.
    • (1996) J. Reine Angew. Math. , vol.477 , pp. 129-197
    • Mallet-Paret, J.1    Nussbaum, R.D.2
  • 28
    • 0007064960 scopus 로고
    • On the solutions of certain integral-like operator equations: Existence, uniqueness, and dependence theorems
    • 28. L. W. Neustadt, On the solutions of certain integral-like operator equations: existence, uniqueness, and dependence theorems, Arch. Rational Mech. Anal. 38 (1970), 131-160.
    • (1970) Arch. Rational Mech. Anal. , vol.38 , pp. 131-160
    • Neustadt, L.W.1
  • 30
    • 0007064961 scopus 로고
    • A singular perturbation analysis with applications to delay differential equations
    • 30. P. D. Paraskevopolous, A singular perturbation analysis with applications to delay differential equations, J. Dynamics Differential Equations 7 (1995), 263-285.
    • (1995) J. Dynamics Differential Equations , vol.7 , pp. 263-285
    • Paraskevopolous, P.D.1
  • 31
    • 38249026102 scopus 로고
    • Asymptotic expansion for the initial value problem of the sunflower equation
    • 31. M. L. Peña, Asymptotic expansion for the initial value problem of the sunflower equation, J. Math. Anal. Appl. 143 (1989), 471-479.
    • (1989) J. Math. Anal. Appl. , vol.143 , pp. 471-479
    • Peña, M.L.1
  • 33
    • 0007022249 scopus 로고
    • Continuity properties of the attainable set of singularly perturbed control system with time delay
    • 33. I. Slavov, Continuity properties of the attainable set of singularly perturbed control system with time delay, Proc. Tech. Univ. Sofia 48 (1995), 29-36.
    • (1995) Proc. Tech. Univ. Sofia , vol.48 , pp. 29-36
    • Slavov, I.1
  • 34
    • 0000708147 scopus 로고
    • Periodic solutions of the sunflower equation χ̈ + (a/r) χ̇ + (b/r) sin χ(t-r) = 0
    • 34. A. Somolinos, Periodic solutions of the sunflower equation χ̈ + (a/r) χ̇ + (b/r) sin χ(t-r) = 0, Quart. Appl. Math. 35 (1977/1978), 465-478.
    • (1977) Quart. Appl. Math. , vol.35 , pp. 465-478
    • Somolinos, A.1
  • 35
    • 0000440966 scopus 로고
    • Compensated compactness and applications in partial differential equations
    • R. J. Knops, Ed., Pitman, London
    • 35. L. Tartar, Compensated compactness and applications in partial differential equations, in "Nonlinear Analysis and Mechanics" (R. J. Knops, Ed.), pp. 136-212, Pitman, London, 1979.
    • (1979) Nonlinear Analysis and Mechanics , pp. 136-212
    • Tartar, L.1
  • 36
    • 0000961974 scopus 로고
    • A course on young measures
    • 36. M. Valadier, A course on Young measures, Rend. Istit. Mat. Univ. Trieste 26, Supp. (1994), 349-394.
    • (1994) Rend. Istit. Mat. Univ. Trieste , vol.26 , Issue.SUPPL. , pp. 349-394
    • Valadier, M.1
  • 38
    • 84941442792 scopus 로고
    • A nonlinear differential difference eqution
    • 38. E. M. Wright, A nonlinear differential difference eqution, J. Reine Angew. Math. 194 (1955), 66-87.
    • (1955) J. Reine Angew. Math. , vol.194 , pp. 66-87
    • Wright, E.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.