-
2
-
-
85038309990
-
-
A. G. Butkovskiy and Y. I. Samoilenko, (Nauka, Moscow, 1984) (in Russian)
-
A. G. Butkovskiy and Y. I. Samoilenko, Control of Quantum Mechanical Processes (Nauka, Moscow, 1984) (in Russian).
-
-
-
-
8
-
-
0000445804
-
-
J F. Krause, R M. Whitnel, K R. Wilson, Y J. Yan, and Sh. Mukamel, J. Chem. Phys.99, 6562 (1993).
-
(1993)
J. Chem. Phys.
, vol.99
, pp. 6562
-
-
Krause, J.F.1
Whitnel, R.M.2
Wilson, K.R.3
Yan, Y.J.4
Mukamel, S.5
-
9
-
-
11944257534
-
-
B. Kohler, V V. Yakovlev, J. Che, J L. Krause, M. Messina, K R. Wilson, N. Schwentner, R M. Whitnell, and Y. Yan, Phys. Rev. Lett.74, 3360 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 3360
-
-
Kohler, B.1
Yakovlev, V.V.2
Che, J.3
Krause, J.L.4
Messina, M.5
Wilson, K.R.6
Schwentner, N.7
Whitnell, R.M.8
Yan, Y.9
-
11
-
-
0542380331
-
-
J L. Krause, D H. Reitze, G D. Sanders, A V. Kuznetsov, and C J. Stanton, Phys. Rev. B57, 9024 (1998).
-
(1998)
Phys. Rev. B
, vol.57
, pp. 9024
-
-
Krause, J.L.1
Reitze, D.H.2
Sanders, G.D.3
Kuznetsov, A.V.4
Stanton, C.J.5
-
12
-
-
0001258397
-
-
M S C. Luo, S L. Chuang, P C M. Planken, I. Brener, and M C. Nuss, Phys. Rev. B48, 11 043 (1993).
-
(1993)
Phys. Rev. B
, vol.48
, pp. 11 043
-
-
Luo, M.S.C.1
Chuang, S.L.2
Planken, P.C.M.3
Brener, I.4
Nuss, M.C.5
-
17
-
-
85038276454
-
-
A. Dargys, in, Mat. Sci. Forum (accepted)
-
A. Dargys, in Proceedings of the 11th International Symposium on Ultrafast Phenomena in Semiconductors, Vilnius, August, 2001, Mat. Sci. Forum (accepted).
-
-
-
-
18
-
-
0032595028
-
-
P. Renucci, X. Marie, T. Amand, M. Paillard, and J. Barrau, Superlattices Microstruct.26, 61 (1999).
-
(1999)
Superlattices Microstruct.
, vol.26
, pp. 61
-
-
Renucci, P.1
Marie, X.2
Amand, T.3
Paillard, M.4
Barrau, J.5
-
26
-
-
85038305767
-
-
In calculating (formula presented) and (formula presented) apart from (formula presented) we need the product (formula presented), where (formula presented) is the complex conjugate of., However, the integral that appears in the exponent of (formula presented) after integration of Eq. (11) can be expressed in terms of (formula presented) if real and imaginary parts in Eq. (12) are separated and then used to change the integration variable in (formula presented) to (formula presented)
-
In calculating (formula presented) and (formula presented) apart from (formula presented) we need the product (formula presented), where (formula presented) is the complex conjugate of R. However, the integral that appears in the exponent of (formula presented) after integration of Eq. (11) can be expressed in terms of (formula presented) if real and imaginary parts in Eq. (12) are separated and then used to change the integration variable in (formula presented) to (formula presented)
-
-
-
-
27
-
-
0003474751
-
-
Cambridge, University Press, and, Chap. 17
-
W H. Press, S A. Teukolsky, W T. Vetterling, and B P. Flannery, Numerical Recipes in Fortran (Cambridge, University Press, 1992), Chap. 17.
-
(1992)
Numerical Recipes in Fortran
-
-
Press, W.H.1
Teukolsky, S.A.2
Vetterling, W.T.3
Flannery, B.P.4
|