-
1
-
-
3343012868
-
-
J.P. Eisenstein, G. S. Boebinger, L. N. Pfeiffer, K. W. West, and Song He, Phys. Rev. Lett. 68, 1383 (1992);
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 1383
-
-
Eisenstein, J.P.1
Boebinger, G.S.2
Pfeiffer, L.N.3
West, K.W.4
-
2
-
-
0042709756
-
-
Phys. Rev. Lett.S.Q. Murphy, J. P. Eisenstein, G. S. Boebinger, L. N. Pfeiffer, and K. W. West, 72, 728 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 728
-
-
Murphy, S.Q.1
Eisenstein, J.P.2
Boebinger, G.S.3
Pfeiffer, L.N.4
West, K.W.5
-
3
-
-
4043136973
-
-
X.-G. Wen and A. Zee, Phys. Rev. Lett. 69, 1811 (1992);
-
X.-G. Wen and A. Zee, Phys. Rev. Lett. 69, 1811 (1992);
-
-
-
-
4
-
-
0001313119
-
-
Kun Yang, K. Moon, Lotfi Belkhir, H. Mori, S. M. Girvin, A. H. MacDonald, L. Zheng, and D. Yoshioka, Phys. Rev. B 54, 11 644 (1996);
-
Kun Yang, K. Moon, Lotfi Belkhir, H. Mori, S. M. Girvin, A. H. MacDonald, L. Zheng, and D. Yoshioka, Phys. Rev. B 54, 11 644 (1996);
-
-
-
-
5
-
-
0001477708
-
-
Phys. Rev. BK. Moon, H. Mori, Kun Yang, S. M. Girvin, A. H. MacDonald, L. Zheng, D. Yoshioka, and Shou-Cheng Zheng, 51, 5138 (1995)
-
Phys. Rev. BK. Moon, H. Mori, Kun Yang, S. M. Girvin, A. H. MacDonald, L. Zheng, D. Yoshioka, and Shou-Cheng Zheng, 51, 5138 (1995).
-
-
-
-
6
-
-
2942632542
-
-
I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 84, 5808 (2000);
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 5808
-
-
Spielman, I.B.1
Eisenstein, J.P.2
Pfeiffer, L.N.3
West, K.W.4
-
9
-
-
0006255976
-
-
Phys. Rev. Lett.Ady Stern, S. M. Girvin, A. H. MacDonald, and Ning Ma, 86, 1829 (2001);
-
Phys. Rev. Lett.Ady Stern, S. M. Girvin, A. H. MacDonald, and Ning Ma, 86, 1829 (2001);
-
-
-
-
10
-
-
4244197583
-
-
Phys. Rev. Lett.Michael M. Fogler and Frank Wilczek, 86, 1833 (2001);
-
Phys. Rev. Lett.Michael M. Fogler and Frank Wilczek, 86, 1833 (2001);
-
-
-
-
11
-
-
85038972051
-
-
Phys. Rev. Lett. (in press), cond-mat/0104128
-
L. Radzihovsky, Phys. Rev. Lett. (in press), cond-mat/0104128;
-
(1967)
Phys. Rev.
, vol.164
, pp. 498
-
-
Radzihovsky, L.1
-
15
-
-
85038961788
-
-
Here, we have ignored the long-range part of the Coulomb interaction, 210 which if kept forbids a detailed analytical treatment. The resulting short-ranged model is realized in bilayer systems with a screening conductor
-
Here, we have ignored the long-range part of the Coulomb interaction,210 which if kept forbids a detailed analytical treatment. The resulting short-ranged model is realized in bilayer systems with a screening conductor.
-
-
-
-
18
-
-
85038965253
-
-
Although an infinite number of solutions exist, only two satisfy the physically-motivated requirement that a saddle-point solution should be “close” in form to the uniform current carrying state, only deviating from it locally
-
Although an infinite number of solutions exist, only two satisfy the physically-motivated requirement that a saddle-point solution should be “close” in form to the uniform current carrying state, only deviating from it locally.
-
-
-
-
19
-
-
85038920504
-
-
Interestingly, such an electromagnetically charged but topologically neutral vortex pair corresponds to a charged fermionic excitation which is gapped in the QH state. Although disorder will undoubtedly induce such charged quasiparticles, the QH state should survive as long as they remain localized. The delocalization of such topologically neutral vortex dipoles will destroy the QHE, but will preserve the interlayer phase-coherence, therefore suggesting the possibility of an exotic gapless interlayer phase-coherent state in a narrow sliver around (Formula presented). L.R. thanks Steve Girvin for discussion on this point
-
Interestingly, such an electromagnetically charged but topologically neutral vortex pair corresponds to a charged fermionic excitation which is gapped in the QH state. Although disorder will undoubtedly induce such charged quasiparticles, the QH state should survive as long as they remain localized. The delocalization of such topologically neutral vortex dipoles will destroy the QHE, but will preserve the interlayer phase-coherence, therefore suggesting the possibility of an exotic gapless interlayer phase-coherent state in a narrow sliver around (Formula presented). L.R. thanks Steve Girvin for discussion on this point.
-
-
-
|