-
1
-
-
3643120476
-
-
H. Drexler, D. Leonard, W. Hansen, J P. Kotthaus, and P M. Petroff, Phys. Rev. Lett.73, 2252 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.73
, pp. 2252
-
-
Drexler, H.1
Leonard, D.2
Hansen, W.3
Kotthaus, J.P.4
Petroff, P.M.5
-
3
-
-
0030521429
-
-
M. Fricke, A. Lorke, J P. Kotthaus, G. Medeiros-Ribeiro, and P M. Petroff, Europhys. Lett.36, 197 (1996).
-
(1996)
Europhys. Lett.
, vol.36
, pp. 197
-
-
Fricke, M.1
Lorke, A.2
Kotthaus, J.P.3
Medeiros-Ribeiro, G.4
Petroff, P.M.5
-
4
-
-
0031360386
-
-
R J. Warburton, C S. Dürr, K. Karrai, J P. Kotthaus, G. Medeiros-Ribeiro, and P M. Petroff, Phys. Rev. Lett.79, 5282 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 5282
-
-
Warburton, R.J.1
Dürr, C.S.2
Karrai, K.3
Kotthaus, J.P.4
Medeiros-Ribeiro, G.5
Petroff, P.M.6
-
5
-
-
0344879374
-
-
S. Anand, N. Carlsson, M E. Pistol, L. Samuelson, and W. Seifert, Appl. Phys. Lett.67, 3016 (1995).
-
(1995)
Appl. Phys. Lett.
, vol.67
, pp. 3016
-
-
Anand, S.1
Carlsson, N.2
Pistol, M.E.3
Samuelson, L.4
Seifert, W.5
-
6
-
-
0000194066
-
-
C M A. Kapteyn, F. Heinrichsdorff, O. Stier, R. Heitz, M. Grundmann, N D. Zakharov, D. Bimberg, and P. Werner, Phys. Rev. B60, 14 265 (1999).
-
(1999)
Phys. Rev. B
, vol.60
, pp. 14 265
-
-
Kapteyn, C.M.A.1
Heinrichsdorff, F.2
Stier, O.3
Heitz, R.4
Grundmann, M.5
Zakharov, N.D.6
Bimberg, D.7
Werner, P.8
-
7
-
-
0032047520
-
-
S K. Zhang, H J. Zhu, F. Lu, Z M. Jiang, and Xun Wang, Phys. Rev. Lett.80, 3340 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 3340
-
-
Zhang, S.K.1
Zhu, H.J.2
Lu, F.3
Jiang, Z.M.4
-
8
-
-
0000757282
-
-
C. Miesner, T. Asperger, K. Brunner, and G. Abstreiter, Appl. Phys. Lett.77, 2704 (2000).
-
(2000)
Appl. Phys. Lett.
, vol.77
, pp. 2704
-
-
Miesner, C.1
Asperger, T.2
Brunner, K.3
Abstreiter, G.4
-
9
-
-
0000408383
-
-
C M A. Kapteyn, M. Lion, R. Heitz, D. Bimberg, C. Miesner, T. Asperger, K. Brunner, and G. Abstreiter, Appl. Phys. Lett.77, 4169 (2000).
-
(2000)
Appl. Phys. Lett.
, vol.77
, pp. 4169
-
-
Kapteyn, C.M.A.1
Lion, M.2
Heitz, R.3
Bimberg, D.4
Miesner, C.5
Asperger, T.6
Brunner, K.7
Abstreiter, G.8
-
10
-
-
0000347264
-
-
T M. Hsu, W.-H. Chang, K F. Tsai, J.-I. Chyi, N T. Yeh, and T E. Nee, Phys. Rev. B60, R2189 (1999).
-
(1999)
Phys. Rev. B
, vol.60
, pp. R2189
-
-
Hsu, T.M.1
H, W.2
Tsai, K.F.3
I, J.4
Yeh, N.T.5
Nee, T.E.6
-
11
-
-
0034668637
-
-
W.-H. Chang, T M. Hsu, N T. Yeh, and J.-I. Chyi, Phys. Rev. B62, 13 040 (2000).
-
(2000)
Phys. Rev. B
, vol.62
, pp. 13 040
-
-
H, W.1
Hsu, T.M.2
Yeh, N.T.3
I, J.4
-
12
-
-
0035128280
-
-
A I. Yakimov, N P. Stepina, A V. Dvurechenskii, A I. Nikiforov, and A V. Nenashev, Phys. Rev. B63, 045312 (2001).
-
(2001)
Phys. Rev. B
, vol.63
, pp. 45312
-
-
Yakimov, A.I.1
Stepina, N.P.2
Dvurechenskii, A.V.3
Nikiforov, A.I.4
Nenashev, A.V.5
-
13
-
-
0001760979
-
-
P N. Brounkov, A. Polimeni, S T. Stoddart, M. Henini, L. Eaves, P C. Main, A R. Kovsh, Yu.G. Musikhin, and S G. Konnikov, Appl. Phys. Lett.73, 1092 (1998).
-
(1998)
Appl. Phys. Lett.
, vol.73
, pp. 1092
-
-
Brounkov, P.N.1
Polimeni, A.2
Stoddart, S.T.3
Henini, M.4
Eaves, L.5
Main, P.C.6
Kovsh, A.R.7
Yu, G.8
Konnikov, S.G.9
-
14
-
-
85038969020
-
-
The method of analyzing the ac response of carrier being exchanged between the dots and the barrier is similar to those commonly employed for the defect states in semiconductors, see for example, J. Bourgoin and M. Lannoo, (Springer-Verlag, Berlin, 1983)
-
The method of analyzing the ac response of carrier being exchanged between the dots and the barrier is similar to those commonly employed for the defect states in semiconductors, see for example, J. Bourgoin and M. Lannoo, Point Defects in Semiconductors II (Springer-Verlag, Berlin, 1983).
-
-
-
-
15
-
-
0016081559
-
-
See, for example
-
See, for example, D V. Lang, J. Appl. Phys.45, 3023 (1974).
-
(1974)
J. Appl. Phys.
, vol.45
, pp. 3023
-
-
Lang, D.V.1
-
16
-
-
0000792129
-
-
X. Letartre, D. Stiévenard, M. Lannoo, and E. Barbier, J. Appl. Phys.69, 7336 (1991).
-
(1991)
J. Appl. Phys.
, vol.69
, pp. 7336
-
-
Letartre, X.1
Stiévenard, D.2
Lannoo, M.3
Barbier, E.4
-
18
-
-
0001420731
-
-
P W. Fry, I E. Itskevich, D J. Mowbray, M S. Skolnick, J J. Finley, J A. Barker, E P. O’Reilly, L R. Wilson, I A. Larkin, P A. Maksym, M. Hopkinson, M. Al-Khafaji, J P R. David, A G. Cullis, G. Hill, and J C. Clark, Phys. Rev. Lett.84, 733 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 733
-
-
Fry, P.W.1
Itskevich, I.E.2
Mowbray, D.J.3
Skolnick, M.S.4
Finley, J.J.5
Barker, J.A.6
O’Reilly, E.P.7
Wilson, L.R.8
Larkin, I.A.9
Maksym, P.A.10
Hopkinson, M.11
Al-Khafaji, M.12
David, J.P.R.13
Cullis, A.G.14
Hill, G.15
Clark, J.C.16
-
19
-
-
0035911425
-
-
T M. Hsu, W.-H. Chang, C C. Huang, N T. Yeh, and J.-I. Chyi, Appl. Phys. Lett.78, 1760 (2001).
-
(2001)
Appl. Phys. Lett.
, vol.78
, pp. 1760
-
-
Hsu, T.M.1
H, W.2
Huang, C.C.3
Yeh, N.T.4
I, J.5
-
20
-
-
0000989673
-
-
R J. Warburton, B T. Miller, C S. Dürr, C. Bödefeld, K. Karrai, J P. Kotthaus, G. Medeiros-Ribeiro, P M. Petroff, and S. Huant, Phys. Rev. B58, 16 221 (1998).
-
(1998)
Phys. Rev. B
, vol.58
, pp. 16 221
-
-
Warburton, R.J.1
Miller, B.T.2
Dürr, C.S.3
Bödefeld, C.4
Karrai, K.5
Kotthaus, J.P.6
Medeiros-Ribeiro, G.7
Petroff, P.M.8
Huant, S.9
-
21
-
-
85038940133
-
-
To estimate the Coulomb energies and the exchange energies between the carriers confined in a quantum dot with parabolic potential, we need to know the effective mass (formula presented) (formula presented) and the effective confinement length (formula presented) (formula presented) of the electron (hole). The values of (formula presented) (formula presented) can be deduced from the electron(hole)-level splitting (formula presented) (formula presented) of the parabolic potential. In our calculation, we assume an electron-hole level-splitting ratio of (formula presented), then we obtain (formula presented) and (formula presented), based on the measured interband energy splitting of (formula presented). The effective mass values, (formula presented) and (formula presented), were adapted from Ref
-
To estimate the Coulomb energies and the exchange energies between the carriers confined in a quantum dot with parabolic potential, we need to know the effective mass (formula presented) (formula presented) and the effective confinement length (formula presented) (formula presented) of the electron (hole). The values of (formula presented) (formula presented) can be deduced from the electron(hole)-level splitting (formula presented) (formula presented) of the parabolic potential. In our calculation, we assume an electron-hole level-splitting ratio of (formula presented), then we obtain (formula presented) and (formula presented), based on the measured interband energy splitting of (formula presented). The effective mass values, (formula presented) and (formula presented), were adapted from Ref. 20.
-
-
-
|