-
8
-
-
85038911136
-
-
W. Schweika, Springer Tracts in Modern Physics 141 (Springer, Berlin, Heidelberg, 1998)
-
W. Schweika, Disordered Alloys: Diffuse Scattering and Monte Carlo Simulations, Springer Tracts in Modern Physics Vol. 141 (Springer, Berlin, Heidelberg, 1998).
-
-
-
-
9
-
-
85038900057
-
-
H. Dosch, Springer Tracts in Modern Physics 126 (Springer, Berlin, Heidelberg, 1992)
-
H. Dosch, Critical Phenomena at Surfaces and Interfaces, Springer Tracts in Modern Physics Vol. 126 (Springer, Berlin, Heidelberg, 1992).
-
-
-
-
10
-
-
3343001353
-
-
H. Dosch, L. Mailänder, A. Lied, J. Peisl, F. Grey, R L. Johnson, and S. Krummacher, Phys. Rev. Lett.60, 2382 (1988).
-
(1988)
Phys. Rev. Lett.
, vol.60
, pp. 2382
-
-
Dosch, H.1
Mailänder, L.2
Lied, A.3
Peisl, J.4
Grey, F.5
Johnson, R.L.6
Krummacher, S.7
-
11
-
-
85038910282
-
-
S. Dietrich, edited by C. Domb and J.L. Lebowitz (Academic Press, London, 1988), 12, 1–218
-
S. Dietrich, Phase Transitions and Critical Phenomena, edited by C. Domb and J.L. Lebowitz (Academic Press, London, 1988), Vol. 12, pp. 1–218.
-
-
-
-
13
-
-
11944264399
-
-
H. Reichert, P J. Eng, H. Dosch, and I K. Robinson, Phys. Rev. Lett.74, 2006 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 2006
-
-
Reichert, H.1
Eng, P.J.2
Dosch, H.3
Robinson, I.K.4
-
19
-
-
0000437302
-
-
H. Reichert, P J. Eng, H. Dosch, and I K. Robinson, Phys. Rev. Lett.78, 3475 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 3475
-
-
Reichert, H.1
Eng, P.J.2
Dosch, H.3
Robinson, I.K.4
-
20
-
-
0033563330
-
-
H P. Fischer, J. Reinhard, W. Dieterich, and A. Majhofer, Europhys. Lett.46, 755 (1999).
-
(1999)
Europhys. Lett.
, vol.46
, pp. 755
-
-
Fischer, H.P.1
Reinhard, J.2
Dieterich, W.3
Majhofer, A.4
-
30
-
-
0000563373
-
-
C. Frontera, E. Vives, T. Castán, and A. Planes, Phys. Rev. B55, 212 (1997).
-
(1997)
Phys. Rev. B
, vol.55
, pp. 212
-
-
Frontera, C.1
Vives, E.2
Castán, T.3
Planes, A.4
-
31
-
-
85038902726
-
-
S. Engemann, diploma thesis (Universität Stuttgart, 2001), (unpublished)
-
S. Engemann, diploma thesis (Universität Stuttgart, 2001), (unpublished).
-
-
-
-
32
-
-
26544461319
-
-
The Hamiltonian (1) is equivalent with the Blume-Emery-Griffiths model, see, and
-
The Hamiltonian (1) is equivalent with the Blume-Emery-Griffiths model, see M. Blume, V J. Emery, and R B. Griffith, Phys. Rev. A4, 1071 (1971).
-
(1971)
Phys. Rev. A
, vol.4
, pp. 1071
-
-
Blume, M.1
Emery, V.J.2
Griffith, R.B.3
-
33
-
-
0032675726
-
-
For (formula presented) the average vacancy concentration (formula presented) at the ordering temperature (formula presented) is about (formula presented), see, and
-
For (formula presented) the average vacancy concentration (formula presented) at the ordering temperature (formula presented) is about (formula presented), see H.-E. Schaefer, K. Frenner, and R. Würschum, Intermetallics7, 277 (1999).
-
(1999)
Intermetallics
, vol.7
, pp. 277
-
-
E, H.1
Frenner, K.2
Würschum, R.3
-
34
-
-
33744600239
-
-
D.P. Landau, K.K. Mon, Springer, Berlin, Heidelberg, and, in, edited by, and H.-B. Schüttler p
-
W. Schweika and D P. Landau, in Computer Simulation Studies in Condensed Matter Physics X, edited by D.P. Landau, K.K. Mon, and H.-B. Schüttler (Springer, Berlin, Heidelberg, 1998), p. 186–190.
-
(1998)
Computer Simulation Studies in Condensed Matter Physics X
, pp. 186-190
-
-
Schweika, W.1
Landau, D.P.2
-
36
-
-
0013249216
-
-
Within the two-phase region we determined the distribution function (formula presented) of (formula presented) averaged over smaller blocks of size (formula presented) and fitted (formula presented) by two Gaussians. Boundaries of the two-phase region were estimated from mean values of these Gaussians and from temperatures where one of the Gaussian weights vanishes. A full finite-size scaling analysis [see, e.g., and, however, is beyond the scope of this work. Data for the coexistence curves in Fig. 11(a) therefore have limited accuracy
-
Within the two-phase region we determined the distribution function (formula presented) of (formula presented) averaged over smaller blocks of size (formula presented) and fitted (formula presented) by two Gaussians. Boundaries of the two-phase region were estimated from mean values of these Gaussians and from temperatures where one of the Gaussian weights vanishes. A full finite-size scaling analysis [see, e.g., K. Vollmayr, J D. Reger, M. Scheucher, and K. Binder, Z. Phys. B91, 113 (1993)], however, is beyond the scope of this work. Data for the coexistence curves in Fig. 11(a) therefore have limited accuracy.
-
(1993)
Z. Phys. B
, vol.91
, pp. 113
-
-
Vollmayr, K.1
Reger, J.D.2
Scheucher, M.3
Binder, K.4
-
37
-
-
0001178825
-
-
M. Porta, C. Frontera, E. Vives, and T. Castśan, Phys. Rev. B56, 5261 (1997).
-
(1997)
Phys. Rev. B
, vol.56
, pp. 5261
-
-
Porta, M.1
Frontera, C.2
Vives, E.3
Castśan, T.4
-
38
-
-
85038891080
-
-
In a good approximation the main decay of the segregation profile towards the bulk follows an exponential, (formula presented), as long as (formula presented) In the case (formula presented) (formula presented) was extracted from the tails of the (formula presented) profiles
-
In a good approximation the main decay of the segregation profile towards the bulk follows an exponential, (formula presented), as long as (formula presented) In the case (formula presented) (formula presented) was extracted from the tails of the (formula presented) profiles.
-
-
-
-
39
-
-
0001555192
-
-
Z.-W. Lai, Phys. Rev. B41, 9239 (1990).
-
(1990)
Phys. Rev. B
, vol.41
, pp. 9239
-
-
W, Z.1
|