-
1
-
-
0002558592
-
On the dressing method
-
in: P.C. Sabatier (Ed.) Springer, Berlin (see p. 622)
-
V.E. Zakharov, On the dressing method, in: P.C. Sabatier (Ed.), Inverse Methods in Action, Springer, Berlin, 1990, pp. 602-623 (see p. 622).
-
(1990)
Inverse Methods in Action
, pp. 602-623
-
-
Zakharov, V.E.1
-
2
-
-
51249187156
-
Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations, and related solvable many-body problems
-
Calogero F. Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations, and related solvable many-body problems. Nuovo Cimento B. 43:1978;177-241.
-
(1978)
Nuovo Cimento B
, vol.43
, pp. 177-241
-
-
Calogero, F.1
-
3
-
-
0030532332
-
A solvable n -body problem in the plane I
-
Calogero F. A solvable. n -body problem in the plane I J. Math. Phys. 37:1996;1735-1759.
-
(1996)
J. Math. Phys.
, vol.37
, pp. 1735-1759
-
-
Calogero, F.1
-
4
-
-
0032342789
-
Integrable and solvable many-body problems in the plane via complexification
-
Calogero F. Integrable and solvable many-body problems in the plane via complexification. J. Math. Phys. 39:1998;5268-5291.
-
(1998)
J. Math. Phys.
, vol.39
, pp. 5268-5291
-
-
Calogero, F.1
-
5
-
-
0041528838
-
Classical Many-body problems Amenable to Exact Treatments
-
Springer, Berlin
-
F. Calogero, Classical Many-body problems Amenable to Exact Treatments, Lecture Notes in Physics, Springer, Berlin, 2001.
-
(2001)
Lecture Notes in Physics
-
-
Calogero, F.1
-
6
-
-
14944363471
-
A new class of integrable systems and its relation to solitons
-
Ruijsenaars S.N.M., Schneider H. A new class of integrable systems and its relation to solitons. Ann. Phys. NY. 170:1986;370-405.
-
(1986)
Ann. Phys. NY
, vol.170
, pp. 370-405
-
-
Ruijsenaars, S.N.M.1
Schneider, H.2
-
7
-
-
0040844826
-
Hamiltonian character of the motion of the zeros of a polynomial whose coefficients oscillate over time
-
Calogero F., Françoise J.-P. Hamiltonian character of the motion of the zeros of a polynomial whose coefficients oscillate over time. J. Phys. A. 30:1997;211-218.
-
(1997)
J. Phys. a
, vol.30
, pp. 211-218
-
-
Calogero, F.1
Françoise, J.-P.2
-
8
-
-
0001574684
-
The Lax representation for an integrable class of relativistic dynamical systems
-
Bruschi M., Calogero F. The Lax representation for an integrable class of relativistic dynamical systems. Commun. Math. Phys. 109:1987;481-492.
-
(1987)
Commun. Math. Phys.
, vol.109
, pp. 481-492
-
-
Bruschi, M.1
Calogero, F.2
-
9
-
-
0342883880
-
Some applications of a convenient finite-dimensional matrix representation of the differential operator
-
Rend. Sem. Mat. Univ. and Polit., Torino, October
-
F. Calogero, Some applications of a convenient finite-dimensional matrix representation of the differential operator, in: Proceedings of the International Conference on "Special Functions: Theory and Computation", Rend. Sem. Mat. Univ. and Polit., Torino, October 1984, Special issue, pp. 23-61.
-
(1984)
In: Proceedings of the International Conference on "special Functions: Theory and Computation"
, Issue.SPECIAL ISSUE
, pp. 23-61
-
-
Calogero, F.1
-
11
-
-
51249187407
-
Explicit solution of the Calogero model in the classical case and geodesic flows on symmetric spaces of zero curvature
-
Olshanetsky M.A., Perelomov A.M. Explicit solution of the Calogero model in the classical case and geodesic flows on symmetric spaces of zero curvature. Lett. Nuovo Cimento. 16:1976;333-339.
-
(1976)
Lett. Nuovo Cimento
, vol.16
, pp. 333-339
-
-
Olshanetsky, M.A.1
Perelomov, A.M.2
-
12
-
-
0039608333
-
Solution of certain integrable dynamical systems of Ruijsenaars-Schneider-type with completely periodic trajectories
-
F. Calogero, J.-P. Françoise, Solution of certain integrable dynamical systems of Ruijsenaars-Schneider-type with completely periodic trajectories, Ann. Henri Poincaré 1 (2000) 173-191.
-
(2000)
Ann. Henri Poincaré
, vol.1
, pp. 173-191
-
-
Calogero, F.1
Françoise, J.-P.2
-
13
-
-
0031518164
-
A class of integrable Hamiltonian systems whose solutions are (perhaps) all completely periodic
-
Calogero F. A class of integrable Hamiltonian systems whose solutions are (perhaps) all completely periodic. J. Math. Phys. 38:1997;5711-5719.
-
(1997)
J. Math. Phys.
, vol.38
, pp. 5711-5719
-
-
Calogero, F.1
-
14
-
-
0034552814
-
Solvable and/or integrable and/or linearizable N -body problems in ordinary (three-dimensional) space I
-
M. Bruschi, F. Calogero, Solvable and/or integrable and/or linearizable N -body problems in ordinary (three-dimensional) space I, J. Nonlinear Math. Phys. 7 (2000) 303-386.
-
(2000)
J. Nonlinear Math. Phys.
, vol.7
, pp. 303-386
-
-
Bruschi, M.1
Calogero, F.2
-
15
-
-
0011546968
-
Classical integrable finite-dimensional systems related to Lie algebras
-
Olshanetsky M.A., Perelomov A.M. Classical integrable finite-dimensional systems related to Lie algebras. Phys. Rep. 71:1981;313-400.
-
(1981)
Phys. Rep.
, vol.71
, pp. 313-400
-
-
Olshanetsky, M.A.1
Perelomov, A.M.2
|