메뉴 건너뛰기




Volumn 253, Issue 2, 2001, Pages 389-405

On Oscillation of a Generalized Logistic Equation with Several Delays

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0035863975     PISSN: 0022247X     EISSN: None     Source Type: Journal    
DOI: 10.1006/jmaa.2000.7140     Document Type: Article
Times cited : (6)

References (25)
  • 1
    • 0001249569 scopus 로고
    • Time delay versus stability in population models with two or three trophic levels
    • May R. M. Time delay versus stability in population models with two or three trophic levels. Ecology. 54:1973;315-325.
    • (1973) Ecology , vol.54 , pp. 315-325
    • May, R.M.1
  • 2
    • 84941442792 scopus 로고
    • A nonlinear difference-differential equation
    • Wright E. M. A nonlinear difference-differential equation. J. Reine Angew. Math. 194:1955;66-87.
    • (1955) J. Reine Angew. Math. , vol.194 , pp. 66-87
    • Wright, E.M.1
  • 3
    • 0002120461 scopus 로고
    • On the nonlinear difference differential equation ẏ(t) = [A - By(t - τ)]y(t)
    • Kakutani S., Markus L. On the nonlinear difference differential equation ẏ(t) = [A - By(t - τ)]y(t). Contrib. Theory Nonlinear Oscillations. 4:1958;1-18.
    • (1958) Contrib. Theory Nonlinear Oscillations , vol.4 , pp. 1-18
    • Kakutani, S.1    Markus, L.2
  • 4
    • 0001135604 scopus 로고
    • On the nonlinear differential difference equation ḟ(x) = f(x - 1)[1 + f(x)]
    • Jones J. S. On the nonlinear differential difference equation ḟ(x) = f(x - 1)[1 + f(x)]. J. Math. Anal. Appl. 4:1962;440-469.
    • (1962) J. Math. Anal. Appl. , vol.4 , pp. 440-469
    • Jones, J.S.1
  • 5
    • 0001603769 scopus 로고
    • Oscillation and nonoscillation in a nonautonomous delay-logistic equation
    • Zhang B., Gopalsamy K. Oscillation and nonoscillation in a nonautonomous delay-logistic equation. Quart. Appl. Math. XLVI:1988;267-273.
    • (1988) Quart. Appl. Math. , vol.46 , pp. 267-273
    • Zhang, B.1    Gopalsamy, K.2
  • 8
    • 84968497717 scopus 로고
    • Global stability of a biological model with time delay
    • Lenhart S. M., Travis C. C. Global stability of a biological model with time delay. Proc. Amer. Math. Soc. 96:1986;75-78.
    • (1986) Proc. Amer. Math. Soc. , vol.96 , pp. 75-78
    • Lenhart, S.M.1    Travis, C.C.2
  • 10
    • 0002155437 scopus 로고
    • Necessary and sufficient conditions for the oscillations of multiplicative delay logistic equation
    • Grace S. R., Györi I., Lalli B. S. Necessary and sufficient conditions for the oscillations of multiplicative delay logistic equation. Quart. Appl. Math. LIII:1995;69-79.
    • (1995) Quart. Appl. Math. , vol.53 , pp. 69-79
    • Grace, S.R.1    Györi, I.2    Lalli, B.S.3
  • 11
    • 0001286698 scopus 로고    scopus 로고
    • Nonoscillation of generalized nonautonomous logistic equation with multiple delays
    • Palaniswami S. C., Ramasami E. K. Nonoscillation of generalized nonautonomous logistic equation with multiple delays. Differential Equations Dynam. Systems. 4:1996;379-385.
    • (1996) Differential Equations Dynam. Systems , vol.4 , pp. 379-385
    • Palaniswami, S.C.1    Ramasami, E.K.2
  • 12
    • 0028076577 scopus 로고
    • Oscillation and global stability in a delay logistic equation
    • Ladas G., Qian C. Oscillation and global stability in a delay logistic equation. Dynam. Stability Systems. 9:1994;153-162.
    • (1994) Dynam. Stability Systems , vol.9 , pp. 153-162
    • Ladas, G.1    Qian, C.2
  • 13
    • 0000933188 scopus 로고
    • Global attractivity in a "food-limited" population model
    • Grove E. A., Ladas G., Qian C. Global attractivity in a "food-limited" population model. Dynam. Systems Appl. 2:1993;243-249.
    • (1993) Dynam. Systems Appl. , vol.2 , pp. 243-249
    • Grove, E.A.1    Ladas, G.2    Qian, C.3
  • 14
    • 0003058155 scopus 로고
    • Necessary and sufficient conditions for oscillation of delay-logistic equations
    • Yang Z. Q. Necessary and sufficient conditions for oscillation of delay-logistic equations. J. Biomath. 7:1992;99-109.
    • (1992) J. Biomath. , vol.7 , pp. 99-109
    • Yang, Z.Q.1
  • 15
    • 0003145506 scopus 로고
    • Nonoscillatory solutions of generalized delay logistic equations
    • Wang Z., Yu J. S., Huang L. H. Nonoscillatory solutions of generalized delay logistic equations. Chinese J. Math. 21:1993;81-90.
    • (1993) Chinese J. Math. , vol.21 , pp. 81-90
    • Wang, Z.1    Yu, J.S.2    Huang, L.H.3
  • 16
    • 0025445225 scopus 로고
    • The existence of nonoscillatory solutions to a generalized nonautonomous, delay logistic equation
    • Aiello W. G. The existence of nonoscillatory solutions to a generalized nonautonomous, delay logistic equation. Math. Anal. Appl. 149:1990;114-123.
    • (1990) Math. Anal. Appl. , vol.149 , pp. 114-123
    • Aiello, W.G.1
  • 17
    • 84972553294 scopus 로고
    • Qualitative analysis of a nonautonomous nonlinear delay differential equations
    • Kuang Y., Zhang B. G., Zhao T. Qualitative analysis of a nonautonomous nonlinear delay differential equations. Tohoku Math. J. 43:1991;509-528.
    • (1991) Tohoku Math. J. , vol.43 , pp. 509-528
    • Kuang, Y.1    Zhang, B.G.2    Zhao, T.3
  • 18
    • 0003098991 scopus 로고    scopus 로고
    • Oscillation and global attractivity in a multiplicative delay logistic equation
    • Chen M.-P., Lalli B. S., Yu J. S. Oscillation and global attractivity in a multiplicative delay logistic equation. Differential Equations Dynam. Systems. 5:1997;75-83.
    • (1997) Differential Equations Dynam. Systems , vol.5 , pp. 75-83
    • Chen, M.-P.1    Lalli, B.S.2    Yu, J.S.3
  • 19
    • 0000181461 scopus 로고    scopus 로고
    • On non-oscillation of a logistic equation with several delays
    • Berezansky L., Braverman E. On non-oscillation of a logistic equation with several delays. J. Comput. Appl. Math. 113:2000;255-265.
    • (2000) J. Comput. Appl. Math. , vol.113 , pp. 255-265
    • Berezansky, L.1    Braverman, E.2
  • 20
    • 0034216488 scopus 로고    scopus 로고
    • On oscillation properties of a logistic equations with several delays
    • Berezansky L., Braverman E. On oscillation properties of a logistic equations with several delays. J. Math. Anal. Appl. 247:2000;110-125.
    • (2000) J. Math. Anal. Appl. , vol.247 , pp. 110-125
    • Berezansky, L.1    Braverman, E.2
  • 21
    • 0000354535 scopus 로고    scopus 로고
    • Comparison theorems and asymptotic equilibrium for delay differential and difference equations
    • Györi I., Pituk M. Comparison theorems and asymptotic equilibrium for delay differential and difference equations. Dynam. Systems Appl. 5:1996;277-303.
    • (1996) Dynam. Systems Appl. , vol.5 , pp. 277-303
    • Györi, I.1    Pituk, M.2
  • 22
    • 0003009806 scopus 로고    scopus 로고
    • Oscillation of a linear delay impulsive differential equation
    • Berezansky L., Braverman E. Oscillation of a linear delay impulsive differential equation. Comm. Appl. Nonlinear Anal. 3:1996;61-77.
    • (1996) Comm. Appl. Nonlinear Anal. , vol.3 , pp. 61-77
    • Berezansky, L.1    Braverman, E.2
  • 23
    • 0001045025 scopus 로고    scopus 로고
    • On oscillation of a second order impulsive linear delay differential equation
    • Berezansky L., Braverman E. On oscillation of a second order impulsive linear delay differential equation. J. Math. Anal. Appl. 233:1999;276-300.
    • (1999) J. Math. Anal. Appl. , vol.233 , pp. 276-300
    • Berezansky, L.1    Braverman, E.2
  • 24
    • 0001552859 scopus 로고    scopus 로고
    • On nonoscillation of a scalar delay differential equation
    • Berezansky L., Braverman E. On nonoscillation of a scalar delay differential equation. Dynam. Systems Appl. 6:1997;567-580.
    • (1997) Dynam. Systems Appl. , vol.6 , pp. 567-580
    • Berezansky, L.1    Braverman, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.