메뉴 건너뛰기




Volumn 10, Issue 3, 2001, Pages 179-209

A complexity gap for tree resolution

Author keywords

Logical aspects of complexity; Propositional proof complexity; Resolution proofs

Indexed keywords


EID: 0035739454     PISSN: 10163328     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00037-001-8194-y     Document Type: Article
Times cited : (34)

References (40)
  • 2
    • 0002127131 scopus 로고
    • The complexity of the pigeonhole principle
    • M. AJTAI (1994a). The complexity of the pigeonhole principle. Combinatorica 14, 417-433.
    • (1994) Combinatorica , vol.14 , pp. 417-433
    • Ajtai, M.1
  • 3
    • 0028013944 scopus 로고
    • The independence of the modulo p counting principles
    • M. AJTAI (1994b). The independence of the modulo p counting principles. In Proc. 26th ACM STOC, 402-411.
    • (1994) Proc. 26th ACM STOC , pp. 402-411
    • Ajtai, M.1
  • 6
    • 0031639853 scopus 로고    scopus 로고
    • On the complexity of unsatisfiability proofs for random k-CNF formulas
    • P. BEAME, R. KARP, T. PITASSI & M. SAKS (1998). On the complexity of unsatisfiability proofs for random k-CNF formulas. In STOC 98, 561-571.
    • (1998) STOC , vol.98 , pp. 561-571
    • Beame, P.1    Karp, R.2    Pitassi, T.3    Saks, M.4
  • 8
    • 0000297004 scopus 로고
    • The propositional pigeonhole principle has polynomial size Frege proofs
    • S. Buss (1987). The propositional pigeonhole principle has polynomial size Frege proofs, J. Symbolic Logic 52, 916-927.
    • (1987) J. Symbolic Logic , vol.52 , pp. 916-927
    • Buss, S.1
  • 9
    • 0013520755 scopus 로고
    • Propositional consistency proofs
    • S. Buss (1991). Propositional consistency proofs, Ann. Pure Applied Logic 52, 3-29.
    • (1991) Ann. Pure Applied Logic , vol.52 , pp. 3-29
    • Buss, S.1
  • 10
    • 0040588397 scopus 로고    scopus 로고
    • Introduction to proof theory
    • S. Buss (ed.), Elsevier
    • S. BUSS (1998). Introduction to Proof Theory. In Handbook of Proof Theory, S. Buss (ed.), Elsevier, 1-78.
    • (1998) Handbook of Proof Theory , pp. 1-78
    • Buss, S.1
  • 13
    • 0001601465 scopus 로고
    • The relative efficiency of propositional proof systems
    • S. COOK & R. RECKHOW (1979). The relative efficiency of propositional proof systems, J. Symbolic Logic 44, 36-50.
    • (1979) J. Symbolic Logic , vol.44 , pp. 36-50
    • Cook, S.1    Reckhow, R.2
  • 14
    • 0030108241 scopus 로고    scopus 로고
    • Experimental results on the crossover point in random 3-SAT
    • J. CRAWFORD & L. AUTON (1996). Experimental results on the crossover point in random 3-SAT. Artificial Intelligence 81, 31-57.
    • (1996) Artificial Intelligence , vol.81 , pp. 31-57
    • Crawford, J.1    Auton, L.2
  • 16
    • 0040971912 scopus 로고
    • On the complexity of regular resolution and the Davis-Putnam procedure
    • Z. GALIL (1977). On the complexity of regular resolution and the Davis-Putnam procedure. Theoret. Comput. Sci. 4, 23-46.
    • (1977) Theoret. Comput. Sci. , vol.4 , pp. 23-46
    • Galil, Z.1
  • 17
    • 0000076101 scopus 로고
    • The intractability of resolution
    • A. HAKEN (1985). The intractability of resolution. Theoret. Comput. Sci. 39, 297-308.
    • (1985) Theoret. Comput. Sci. , vol.39 , pp. 297-308
    • Haken, A.1
  • 18
  • 19
    • 0003225563 scopus 로고
    • Model theory
    • Cambridge Univ. Press
    • W. HODGES (1993). Model Theory, Encyclopedia Math. Appl. 42, Cambridge Univ. Press.
    • (1993) Encyclopedia Math. Appl. , vol.42
    • Hodges, W.1
  • 21
    • 0003235615 scopus 로고
    • Bounded arithmetic, propositional logic, and complexity theory
    • Cambridge Univ. Press
    • J. KRAJÍČEK (1995). Bounded Arithmetic, Propositional Logic, and Complexity Theory. Encyclopedia Math. Appl. 60, Cambridge Univ. Press.
    • (1995) Encyclopedia Math. Appl. , vol.60
    • Krajíček, J.1
  • 22
    • 0035278687 scopus 로고    scopus 로고
    • On the degree of ideal membership proofs from uniform families of polynomials over a finite field
    • J. KRAJÍČEK (2001). On the degree of ideal membership proofs from uniform families of polynomials over a finite field. Illinois J. Math. 45, 41-73.
    • (2001) Illinois J. Math. , vol.45 , pp. 41-73
    • Krajíček, J.1
  • 26
    • 0011503667 scopus 로고
    • On the length of proofs of finitistic consistency statements in first order theories
    • J. B. Paris et al. (eds.), North-Holland
    • P. PUDLÁK (1986). On the length of proofs of finitistic consistency statements in first order theories. In Logic Colloquium '84, J. B. Paris et al. (eds.), North-Holland, 165-196.
    • (1986) Logic Colloquium '84 , pp. 165-196
    • Pudlák, P.1
  • 27
    • 0040812553 scopus 로고
    • Improved bounds to the lengths of proofs of finitistic consistency statements
    • Logic and Combinatorics, Amer. Math. Soc.
    • P. PUDLÁK (1987). Improved bounds to the lengths of proofs of finitistic consistency statements. In Logic and Combinatorics, Contemp. Math. 65, Amer. Math. Soc., 309-331.
    • (1987) Contemp. Math. , vol.65 , pp. 309-331
    • Pudlák, P.1
  • 28
    • 0034347425 scopus 로고    scopus 로고
    • Proofs as games
    • P. PUDLÁK (2000). Proofs as games. Amer. Math. Monthly 107, 541-550.
    • (2000) Amer. Math. Monthly , vol.107 , pp. 541-550
    • Pudlák, P.1
  • 29
    • 0002182677 scopus 로고
    • Making infinite structures finite in models of second order bounded arithmetic
    • Oxford Univ. Press
    • S. RIIS (1993a). Making infinite structures finite in models of Second Order Bounded Arithmetic. In Arithmetic, Proof Theory and Computational Complexity, Oxford Univ. Press, 289-319.
    • (1993) Arithmetic, Proof Theory and Computational Complexity , pp. 289-319
    • Riis, S.1
  • 31
    • 0031574550 scopus 로고    scopus 로고
    • Count(q) does not imply count(p)
    • S. RIIS (1997a). Count(q) does not imply Count(p). Ann. Pure Appl. Logic 90, 1-56.
    • (1997) Ann. Pure Appl. Logic , vol.90 , pp. 1-56
    • Riis, S.1
  • 32
    • 0031287714 scopus 로고    scopus 로고
    • Count(q) versus the pigeonhole principle
    • S. RIIS (1997b). Count(q) versus the pigeonhole principle. Arch. Math. Logic 36, 157-188.
    • (1997) Arch. Math. Logic , vol.36 , pp. 157-188
    • Riis, S.1
  • 34
    • 0040218053 scopus 로고    scopus 로고
    • Generating hard tautologies using logic and the symmetric group
    • S. RIIS & M. SITHARAM (2000). Generating hard tautologies using logic and the symmetric group. Logic J. IGPL 8, 787-795.
    • (2000) Logic J. IGPL , vol.8 , pp. 787-795
    • Riis, S.1    Sitharam, M.2
  • 35
    • 0035948339 scopus 로고    scopus 로고
    • Uniformly generated submodules of permutation modules
    • S. RIIS & M. SITHARAM (2001). Uniformly generated submodules of permutation modules. J. Pure Appl. Algebra 160, 285-318.
    • (2001) J. Pure Appl. Algebra , vol.160 , pp. 285-318
    • Riis, S.1    Sitharam, M.2
  • 36
    • 0039626148 scopus 로고
    • Unprovable theorem and fast-growing functions
    • Logic and Combinatorics (Arcata, CA, 1985)
    • S. SIMPSON (1987). Unprovable theorem and fast-growing functions. In Logic and Combinatorics (Arcata, CA, 1985), Contemp. Math. 65, 359-394.
    • (1987) Contemp. Math. , vol.65 , pp. 359-394
    • Simpson, S.1
  • 37
    • 0000389605 scopus 로고
    • On the complexity of derivations in the propositional calculus
    • Studies in Constructive Mathematics and Mathematical Logic. II, A. O. Slisenko (ed.), in Russian
    • G. S. TSEǏTIN (1968). On the complexity of derivations in the propositional calculus. In Studies in Constructive Mathematics and Mathematical Logic. II, A. O. Slisenko (ed.), Zap. Nauchn. Sem. LOMI 8, 234-259 (in Russian).
    • (1968) Zap. Nauchn. Sem. LOMI , vol.8 , pp. 234-259
    • Tseǐtin, G.S.1
  • 38
    • 0023250297 scopus 로고
    • Hard examples for resolution
    • A. URQUHART (1987). Hard examples for resolution. J. Assoc. Comput. Mach. 34, 209-219.
    • (1987) J. Assoc. Comput. Mach. , vol.34 , pp. 209-219
    • Urquhart, A.1
  • 39
    • 84974079324 scopus 로고
    • The complexity of propositional proofs
    • A. URQUHART (1995). The complexity of propositional proofs. Bull. Symbolic Logic 1, 425-467.
    • (1995) Bull. Symbolic Logic , vol.1 , pp. 425-467
    • Urquhart, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.