메뉴 건너뛰기




Volumn 5, Issue 4, 2001, Pages 147-152

Predictive modeling techniques in prostate cancer

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BAYES THEOREM; GENETICS; MATHEMATICAL MODEL; MODEL; MULTIVARIATE ANALYSIS; NONBIOLOGICAL MODEL; NONLINEAR SYSTEM; PREDICTION; PRINCIPAL COMPONENT ANALYSIS; PRIORITY JOURNAL; PROSTATE CANCER; REGRESSION ANALYSIS; REVIEW; SIMULATION; STOCHASTIC MODEL; VALIDATION PROCESS;

EID: 0035676742     PISSN: 10915362     EISSN: None     Source Type: Journal    
DOI: 10.1089/10915360152745812     Document Type: Review
Times cited : (4)

References (56)
  • 1
    • 0030913315 scopus 로고    scopus 로고
    • Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer: A multi-institutional update
    • (1997) JAMA , vol.277 , pp. 1445-1451
    • Partin, A.W.1    Kattan, M.W.2    Subong, E.N.3
  • 3
    • 0031047655 scopus 로고    scopus 로고
    • Biostatistical modeling using traditional variables and genetic biomarkers for predicting the risk of prostate carcinoma recurrence after radical prostatectomy
    • (1997) Cancer , vol.79 , pp. 952-962
    • Bauer, J.J.1    Connelly, R.R.2    Sesterhenn, I.A.3
  • 14
    • 0031397535 scopus 로고    scopus 로고
    • Artificial intelligence and neural networks: Concept, applications and future in urology
    • (1997) Br J Urol , vol.80 , pp. 53-58
    • Tewari, A.1
  • 15
    • 0034967583 scopus 로고    scopus 로고
    • Modeling cancer detection: Tumor size as a source of information on unobservable stages of carcinogenesis
    • (2001) Math Biosci , vol.171 , pp. 113-142
    • Bartoszy1    Nacute2    Ski, R.3
  • 17
    • 0031105320 scopus 로고    scopus 로고
    • Recent advances in mathematical modeling of developmental abnormalities using mechanistic information
    • (1997) Reprod Toxicol , vol.11 , pp. 423-434
    • Kavlock, R.J.1
  • 18
    • 0030250249 scopus 로고    scopus 로고
    • Risk assessment and the use of information on underlying biologic mechanisms: A perspective
    • (1996) Mutat Res , vol.365 , pp. 175-189
    • Rhomberg, L.1
  • 19
    • 0027645924 scopus 로고
    • Chaos, population biology, and epidemiology: Some research implications
    • (1993) Hum Biol , vol.65 , pp. 525-546
    • Philippe, P.1
  • 25
    • 0031787432 scopus 로고    scopus 로고
    • Practical clinical application of predictive factors in prostate cancer: A review with an emphasis on quantitative methods in tissue specimens
    • (1998) Anal Quant Cytol Histol , vol.20 , pp. 323-342
    • Bostwick, D.G.1
  • 26
    • 0030938915 scopus 로고    scopus 로고
    • A comparison of cox proportional hazards and artificial neural network models for medical prognosis
    • (1997) Comput Biol Med , vol.27 , pp. 55-65
    • Ohno Machado, L.1
  • 29
    • 0032442347 scopus 로고    scopus 로고
    • A general framework for random effects survival analysis in the cox proportional hazards setting
    • (1998) Biometrics , vol.54 , pp. 1486-1497
    • Sargent, D.J.1
  • 39
    • 0028518869 scopus 로고
    • Removing the assumption of conditional independence from Bayesian decision models by using artificial neural networks: Some practical techniques and a case study
    • (1994) Artif Intell Med , vol.6 , pp. 437-454
    • Wu, Y.C.1    Gustafson, D.H.2
  • 45
    • 0034660175 scopus 로고    scopus 로고
    • Artificial neural networks for prostate carcinoma risk assessment: An overview
    • (2000) Cancer , vol.88 , pp. 2655-2660
    • Montie, J.E.1    Wei, J.T.2
  • 47
    • 0032324086 scopus 로고    scopus 로고
    • Novel staging tool for localized prostate cancer: A pilot study using genetic adaptive neural networks
    • (1998) J Urol , vol.160 , pp. 430-436
    • Tewari, A.1    Narayan, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.