메뉴 건너뛰기




Volumn 45, Issue 2, 2001, Pages 300-310

Estimates for the Syracuse problem via a probabilistic model

Author keywords

Dynamical system; Random walk; Syracuse problem

Indexed keywords


EID: 0035649630     PISSN: 0040585X     EISSN: None     Source Type: Journal    
DOI: 10.1137/S0040585X97978245     Document Type: Article
Times cited : (7)

References (10)
  • 3
    • 84966206715 scopus 로고
    • On the "3cursive Greek chi + 1" problem
    • J. H. CRANDALL, On the "3cursive Greek chi + 1" problem, Math. Comp., 32 (1978), pp. 1281-1292.
    • (1978) Math. Comp. , vol.32 , pp. 1281-1292
    • Crandall, J.H.1
  • 4
    • 0001930345 scopus 로고
    • Iteration of the number theoretic function f(2n) = n, f(2n + 1) = 3n + 2
    • C. J. EVERETT, Iteration of the number theoretic function f(2n) = n, f(2n + 1) = 3n + 2, Adv. Math., 25 (1977), pp. 42-45.
    • (1977) Adv. Math. , vol.25 , pp. 42-45
    • Everett, C.J.1
  • 6
    • 0002747273 scopus 로고
    • The 3cursive Greek chi + 1 problem and its generalizations
    • J. C. LAGARIAS, The 3cursive Greek chi + 1 problem and its generalizations, Amer. Math. Monthly, 92 (1985), pp. 3-23.
    • (1985) Amer. Math. Monthly , vol.92 , pp. 3-23
    • Lagarias, J.C.1
  • 7
    • 0001377978 scopus 로고
    • The 3cursive Greek chi + 1 problem: Two stochastic models
    • J. C. LAGARIAS AND A. WEISS, The 3cursive Greek chi + 1 problem: Two stochastic models, Ann. Appl. Probab., 2 (1992), pp. 229-261.
    • (1992) Ann. Appl. Probab. , vol.2 , pp. 229-261
    • Lagarias, J.C.1    Weiss, A.2
  • 9
    • 0001114649 scopus 로고
    • A stopping time problem on the positive integers
    • R. TERRAS, A stopping time problem on the positive integers, Acta Arith., 30 (1976), pp. 241-252.
    • (1976) Acta Arith. , vol.30 , pp. 241-252
    • Terras, R.1
  • 10
    • 0000034874 scopus 로고
    • On the existence of a density
    • R. TERRAS, On the existence of a density, Acta Arith., 35 (1979), pp. 101-102.
    • (1979) Acta Arith. , vol.35 , pp. 101-102
    • Terras, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.