-
1
-
-
3342916075
-
Fractal measures and their singularities: The characterization of strange sets
-
T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, "Fractal measures and their singularities: The characterization of strange sets," Phys. Rev. A 33, 1141-1151 (1986).
-
(1986)
Phys. Rev. A
, vol.33
, pp. 1141-1151
-
-
Halsey, T.C.1
Jensen, M.H.2
Kadanoff, L.P.3
Procaccia, I.4
Shraiman, B.I.5
-
3
-
-
12044251142
-
Wavelets and multifractal formalism for singular signals: Applications to turbulence data
-
J. F. Muzy, E. Bacry, and A. Arneodo, "Wavelets and multifractal formalism for singular signals: applications to turbulence data," Phys. Rev. Lett. 67, 3515-3518 (1991).
-
(1991)
Phys. Rev. Lett.
, vol.67
, pp. 3515-3518
-
-
Muzy, J.F.1
Bacry, E.2
Arneodo, A.3
-
4
-
-
33845463207
-
Singularity spectrum of fractal signals from wavelet analysis: Exact results
-
E. Bacry, J. F. Muzy, and A. Arneodo, "Singularity spectrum of fractal signals from wavelet analysis: exact results," J. Stat. Phys. 70, 635-674 (1993).
-
(1993)
J. Stat. Phys.
, vol.70
, pp. 635-674
-
-
Bacry, E.1
Muzy, J.F.2
Arneodo, A.3
-
7
-
-
0035529606
-
Multifractal analysis of conformal axiom A flows
-
Roughly speaking, a conformal axiom-A diffeomorphism is at every point equally expanding in the expanding directions and equally contracting in the contracting directions. See for instance, Ya. B. Pesin and V. Sadovskaya, "Multifractal analysis of conformal axiom A flows," Commun. Math. Phys. 216, 277-312 (2001).
-
(2001)
Commun. Math. Phys.
, vol.216
, pp. 277-312
-
-
Pesin, Ya.B.1
Sadovskaya, V.2
-
8
-
-
4243400850
-
The multifractal formalism revisited with wavelets
-
J. F. Muzy, E. Bacry, and A. Arneodo, "The multifractal formalism revisited with wavelets," I. J. Bifurcations Chaos 4, 245-302 (1994).
-
(1994)
I. J. Bifurcations Chaos
, vol.4
, pp. 245-302
-
-
Muzy, J.F.1
Bacry, E.2
Arneodo, A.3
-
9
-
-
0007196825
-
On the wavelet analysis for multifractal sets
-
J. M. Ghez and S. Vaienti, "On the wavelet analysis for multifractal sets," J. Stat. Phys. 57, 415-420 (1989).
-
(1989)
J. Stat. Phys.
, vol.57
, pp. 415-420
-
-
Ghez, J.M.1
Vaienti, S.2
|