메뉴 건너뛰기




Volumn 50, Issue 4, 2000, Pages 803-823

Quasilinear elliptic problems with multivalued terms

Author keywords

Critical point; Dirichlet problem; Mountain Pass Theorem; Multivalued term; Neumann problem; p Laplacian; Palais Smale condition; Rayleigh quotient; Saddle Point Theorem; Subdifferential

Indexed keywords


EID: 0035648860     PISSN: 00114642     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1022416729213     Document Type: Article
Times cited : (2)

References (23)
  • 1
    • 0003796630 scopus 로고
    • Academic Press, New York
    • R. Adams: Sobolev Spaces. Academic Press, New York, 1975.
    • (1975) Sobolev Spaces
    • Adams, R.1
  • 3
    • 34548350707 scopus 로고
    • Dual variational methods in critical point theory and applications
    • A. Ambrosetti and P. H. Rabinowitz: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973), 349-381.
    • (1973) J. Funct. Anal. , vol.14 , pp. 349-381
    • Ambrosetti, A.1    Rabinowitz, P.H.2
  • 4
    • 0001276960 scopus 로고
    • Strongly nonlinear elliptic problems near resonance: A variational approach
    • A. Anane and J. P. Gossez: Strongly nonlinear elliptic problems near resonance: a variational approach. Comm. Partial Differential Equations 15 (1990), 1141-1159.
    • (1990) Comm. Partial Differential Equations , vol.15 , pp. 1141-1159
    • Anane, A.1    Gossez, J.P.2
  • 5
    • 0001307122 scopus 로고
    • Some discontinuous problems with a quasilinear operator
    • D. Arcoya and M. Calahorrano: Some discontinuous problems with a quasilinear operator. J. Math. Anal. Appl. 187 (1994), 1059-1072.
    • (1994) J. Math. Anal. Appl. , vol.187 , pp. 1059-1072
    • Arcoya, D.1    Calahorrano, M.2
  • 6
    • 0346576608 scopus 로고
    • Generalization of Fredholm alternative for nonlinear differential operators
    • L. Boccardo, P. Drábek, D. Giachetti and M. Kučera: Generalization of Fredholm alternative for nonlinear differential operators. Nonlinear Anal. TMA 10 (1986), 1083-1103.
    • (1986) Nonlinear Anal. TMA , vol.10 , pp. 1083-1103
    • Boccardo, L.1    Drábek, P.2    Giachetti, D.3    Kučera, M.4
  • 7
    • 0000993645 scopus 로고
    • Variational methods for nondifferentiable functionals and their applications to partial differential equations
    • K. C. Chang: Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981), 102-129.
    • (1981) J. Math. Anal. Appl. , vol.80 , pp. 102-129
    • Chang, K.C.1
  • 8
    • 0000224442 scopus 로고
    • Existence results for perturbations of the p-Laplacian
    • D. Costa and C. Magalhaes: Existence results for perturbations of the p-Laplacian. Nonlinear Anal. TMA 24 (1995), 409-418.
    • (1995) Nonlinear Anal. TMA , vol.24 , pp. 409-418
    • Costa, D.1    Magalhaes, C.2
  • 9
    • 0001328382 scopus 로고
    • Pairs of positive solutions for the one-dimensional p-Laplacian
    • C. De Coster: Pairs of positive solutions for the one-dimensional p-Laplacian. Nonlinear Anal. TMA 23 (1994), 669-681.
    • (1994) Nonlinear Anal. TMA , vol.23 , pp. 669-681
    • De Coster, C.1
  • 11
    • 0007228954 scopus 로고
    • Generalized heat transfer between solids and gases under nonlinear boundary conditions
    • A. Friedman: Generalized heat transfer between solids and gases under nonlinear boundary conditions. J. Math. Mech. 8 (1959), 161-184.
    • (1959) J. Math. Mech. , vol.8 , pp. 161-184
    • Friedman, A.1
  • 12
    • 84972538275 scopus 로고
    • Boundary value problems for a class of quasilinear ordinary differential equations
    • Z. Guo: Boundary value problems for a class of quasilinear ordinary differential equations. Differential Integral Equations 6 (1993), 705-719.
    • (1993) Differential Integral Equations , vol.6 , pp. 705-719
    • Guo, Z.1
  • 13
    • 38149144216 scopus 로고
    • A note on a nonresonance condition for a quasilinear elliptic problem
    • A. El. Hachimi, J.-P. Gossez: A note on a nonresonance condition for a quasilinear elliptic problem. Nonlinear Anal. TMA 22 (1994), 229-236.
    • (1994) Nonlinear Anal. TMA , vol.22 , pp. 229-236
    • Hachimi, A.El.1    Gossez, J.-P.2
  • 16
    • 84972527638 scopus 로고
    • Pseudomonotone operators and nonlinear elliptic boundary value problems
    • N. Kenmochi: Pseudomonotone operators and nonlinear elliptic boundary value problems. J. Math. Soc. Japan 27 (1975), 121-149.
    • (1975) J. Math. Soc. Japan , vol.27 , pp. 121-149
    • Kenmochi, N.1
  • 18
    • 84966215301 scopus 로고
    • p-2x = 0
    • p-2x = 0. Proc. AMS. vol. 109, 1991, pp. 157-164.
    • (1991) Proc. AMS. , vol.109 , pp. 157-164
    • Lindqvist, P.1
  • 19
    • 0001415085 scopus 로고
    • Some minimax theorems and applications to nonlinear partial differential equations
    • (L. Cesari, R. Kannan, H. F. Weinberger, eds.). Acad. Press, New York
    • P. H. Rabinowitz: Some minimax theorems and applications to nonlinear partial differential equations. Nonlinear Analysis: A collection of papers of E. Rothe (L. Cesari, R. Kannan, H. F. Weinberger, eds.). Acad. Press, New York, 1978, pp. 161-177.
    • (1978) Nonlinear Analysis: A Collection of Papers of E. Rothe , pp. 161-177
    • Rabinowitz, P.H.1
  • 20
    • 0001901435 scopus 로고
    • Minimax Methods in Critical Point Theory with Applications to Differential Equations
    • AMS, Providence, R. J.
    • P. H. Rabinowitz: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS, Regional Conference Series in Math, No 65, AMS, Providence, R. J., 1986.
    • (1986) CBMS, Regional Conference Series in Math, No 65
    • Rabinowitz, P.H.1
  • 21
    • 0003291397 scopus 로고    scopus 로고
    • Monotone operators in Banach Space and Nonlinear Partial Differential Equations
    • AMS, Providence, R. I.
    • R. Showalter: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Math. Surveys, vol. 49, AMS, Providence, R. I., 1997.
    • (1997) Math. Surveys , vol.49
    • Showalter, R.1
  • 22
    • 0002349602 scopus 로고
    • Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems
    • A. Szulkin: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. H. Poincare Anal. Non Linéaire 3 (1986) 77-109.
    • (1986) Ann. Inst. H. Poincare Anal. Non Linéaire , vol.3 , pp. 77-109
    • Szulkin, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.