메뉴 건너뛰기




Volumn 69, Issue 2, 2001, Pages 120-124

Two charged particles in a one-dimensional well

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0035613554     PISSN: 00029505     EISSN: None     Source Type: Journal    
DOI: 10.1119/1.1286859     Document Type: Article
Times cited : (9)

References (23)
  • 1
    • 33744671578 scopus 로고
    • A Soluble Self-consistent Nuclear Model
    • M. de Llano, "A Soluble Self-consistent Nuclear Model," Am. J. Phys. 41, 484-489 (1973).
    • (1973) Am. J. Phys. , vol.41 , pp. 484-489
    • De Llano, M.1
  • 2
    • 33744649015 scopus 로고
    • Enriching Elementary Quantum Mechanics with the Computer: Self-consistent Field Problems in One-dimension
    • J. S. Bolemon and D. J. Etzold, Jr., "Enriching Elementary Quantum Mechanics with the Computer: Self-consistent Field Problems in One-dimension," Am. J. Phys. 42, 33-42 (1974).
    • (1974) Am. J. Phys. , vol.42 , pp. 33-42
    • Bolemon, J.S.1    Etzold D.J., Jr.2
  • 3
    • 84863997550 scopus 로고
    • One-dimensional models for two-electron systems
    • I. R. Lapidus, "One-dimensional models for two-electron systems," Am. J. Phys. 43, 790-792 (1975).
    • (1975) Am. J. Phys. , vol.43 , pp. 790-792
    • Lapidus, I.R.1
  • 4
    • 0005251191 scopus 로고
    • Hartree-Fock approximation for the one-dimensional 'helium atom'
    • Y. Nogami, M. Vallières, and W. van Dijk, "Hartree-Fock approximation for the one-dimensional 'helium atom,'" Am. J. Phys. 44, 886-888 (1976).
    • (1976) Am. J. Phys. , vol.44 , pp. 886-888
    • Nogami, Y.1    Vallières, M.2    Van Dijk, W.3
  • 5
    • 0005329401 scopus 로고
    • An interesting exactly soluble one-dimensional Hartree problem
    • L. L. Foldy, "An interesting exactly soluble one-dimensional Hartree problem," Am. J. Phys. 44, 1192-1196 (1976).
    • (1976) Am. J. Phys. , vol.44 , pp. 1192-1196
    • Foldy, L.L.1
  • 6
    • 0005579585 scopus 로고
    • An exactly soluble one-dimensional, two-particle problem
    • H. A. Gersch, "An exactly soluble one-dimensional, two-particle problem," Am. J. Phys. 52, 227-230 (1984).
    • (1984) Am. J. Phys. , vol.52 , pp. 227-230
    • Gersch, H.A.1
  • 7
    • 84967871345 scopus 로고
    • A class of exactly soluble many-body Hamiltonians
    • A. Redondo, "A class of exactly soluble many-body Hamiltonians," Am. J. Phys. 54, 643-646 (1986).
    • (1986) Am. J. Phys. , vol.54 , pp. 643-646
    • Redondo, A.1
  • 8
    • 33744645852 scopus 로고
    • Correlated wave function of two particles in an infinite well with a delta repulsion
    • J. R. Mohallem and L. M. Oliveira, "Correlated wave function of two particles in an infinite well with a delta repulsion," Am. J. Phys. 58, 590-592 (1990).
    • (1990) Am. J. Phys. , vol.58 , pp. 590-592
    • Mohallem, J.R.1    Oliveira, L.M.2
  • 9
    • 0032356130 scopus 로고    scopus 로고
    • Density functional theory of one-dimensional two-particle systems
    • H. L. Neal, "Density functional theory of one-dimensional two-particle systems," Am. J. Phys. 66, 512-516 (1998).
    • (1998) Am. J. Phys. , vol.66 , pp. 512-516
    • Neal, H.L.1
  • 10
    • 0032326350 scopus 로고    scopus 로고
    • Short-range repulsion and symmetry of two-body wave functions
    • J. Yang and V. Zelevinsky, "Short-range repulsion and symmetry of two-body wave functions," Am. J. Phys. 66, 247-251 (1998).
    • (1998) Am. J. Phys. , vol.66 , pp. 247-251
    • Yang, J.1    Zelevinsky, V.2
  • 11
    • 0004107553 scopus 로고
    • Allyn and Bacon, Boston, MA, 2nd ed., and 207-210 for a synopsis
    • See I. N. Levine, Quantum Chemistry (Allyn and Bacon, Boston, MA, 1974), 2nd ed., pp. 193-194 and 207-210 for a synopsis.
    • (1974) Quantum Chemistry , pp. 193-194
    • Levine, I.N.1
  • 12
    • 0004027301 scopus 로고
    • Academic, Orlando, FL, 3rd ed., 528-529, and 799-800 for properties of delta functions
    • See G. Arfken, Mathematical Methods for Physicists (Academic, Orlando, FL, 1985), 3rd ed., pp. 481-484, 528-529, and 799-800 for properties of delta functions.
    • (1985) Mathematical Methods for Physicists , pp. 481-484
    • Arfken, G.1
  • 14
    • 33744689102 scopus 로고    scopus 로고
    • note
    • Because of the finite-difference approximation of the kinetic energy operators, the variational principle which usually applies to Eq. (5) is not in force.
  • 15
    • 0001929076 scopus 로고
    • Studies in Perturbation Theory. VII. Localized Perturbation
    • Per-Olov Löwdin, "Studies in Perturbation Theory. VII. Localized Perturbation," J. Mol. Spectrosc. 14, 119-130 (1964).
    • (1964) J. Mol. Spectrosc. , vol.14 , pp. 119-130
    • Löwdin, P.-O.1
  • 17
    • 33744576721 scopus 로고    scopus 로고
    • 2. It follows that for every S eigenfunction, an A eigenfunction can be constructed with the same eigenvalue, and vice versa
    • 2. It follows that for every S eigenfunction, an A eigenfunction can be constructed with the same eigenvalue, and vice versa.
  • 19
    • 0000135303 scopus 로고
    • Methods of conjugate gradients for solving linear systems
    • M. R. Hestenes and E. Stiefel, "Methods of conjugate gradients for solving linear systems," Natl. Bur. Stand. J. Res. 49, 409-436 (1952).
    • (1952) Natl. Bur. Stand. J. Res. , vol.49 , pp. 409-436
    • Hestenes, M.R.1    Stiefel, E.2
  • 21
    • 33744674769 scopus 로고    scopus 로고
    • See Ref. 13, pp. 45-47
    • See Ref. 13, pp. 45-47.
  • 23
    • 33744608467 scopus 로고    scopus 로고
    • (3) = 4.934 940(802) a.u., with exact values of last digits shown in parentheses. Full diagonalization of a 300×300 matrix by a general routine should take less than 10 min on a small computer
    • (3) = 4.934 940(802) a.u., with exact values of last digits shown in parentheses. Full diagonalization of a 300×300 matrix by a general routine should take less than 10 min on a small computer.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.