-
1
-
-
33744671578
-
A Soluble Self-consistent Nuclear Model
-
M. de Llano, "A Soluble Self-consistent Nuclear Model," Am. J. Phys. 41, 484-489 (1973).
-
(1973)
Am. J. Phys.
, vol.41
, pp. 484-489
-
-
De Llano, M.1
-
2
-
-
33744649015
-
Enriching Elementary Quantum Mechanics with the Computer: Self-consistent Field Problems in One-dimension
-
J. S. Bolemon and D. J. Etzold, Jr., "Enriching Elementary Quantum Mechanics with the Computer: Self-consistent Field Problems in One-dimension," Am. J. Phys. 42, 33-42 (1974).
-
(1974)
Am. J. Phys.
, vol.42
, pp. 33-42
-
-
Bolemon, J.S.1
Etzold D.J., Jr.2
-
3
-
-
84863997550
-
One-dimensional models for two-electron systems
-
I. R. Lapidus, "One-dimensional models for two-electron systems," Am. J. Phys. 43, 790-792 (1975).
-
(1975)
Am. J. Phys.
, vol.43
, pp. 790-792
-
-
Lapidus, I.R.1
-
4
-
-
0005251191
-
Hartree-Fock approximation for the one-dimensional 'helium atom'
-
Y. Nogami, M. Vallières, and W. van Dijk, "Hartree-Fock approximation for the one-dimensional 'helium atom,'" Am. J. Phys. 44, 886-888 (1976).
-
(1976)
Am. J. Phys.
, vol.44
, pp. 886-888
-
-
Nogami, Y.1
Vallières, M.2
Van Dijk, W.3
-
5
-
-
0005329401
-
An interesting exactly soluble one-dimensional Hartree problem
-
L. L. Foldy, "An interesting exactly soluble one-dimensional Hartree problem," Am. J. Phys. 44, 1192-1196 (1976).
-
(1976)
Am. J. Phys.
, vol.44
, pp. 1192-1196
-
-
Foldy, L.L.1
-
6
-
-
0005579585
-
An exactly soluble one-dimensional, two-particle problem
-
H. A. Gersch, "An exactly soluble one-dimensional, two-particle problem," Am. J. Phys. 52, 227-230 (1984).
-
(1984)
Am. J. Phys.
, vol.52
, pp. 227-230
-
-
Gersch, H.A.1
-
7
-
-
84967871345
-
A class of exactly soluble many-body Hamiltonians
-
A. Redondo, "A class of exactly soluble many-body Hamiltonians," Am. J. Phys. 54, 643-646 (1986).
-
(1986)
Am. J. Phys.
, vol.54
, pp. 643-646
-
-
Redondo, A.1
-
8
-
-
33744645852
-
Correlated wave function of two particles in an infinite well with a delta repulsion
-
J. R. Mohallem and L. M. Oliveira, "Correlated wave function of two particles in an infinite well with a delta repulsion," Am. J. Phys. 58, 590-592 (1990).
-
(1990)
Am. J. Phys.
, vol.58
, pp. 590-592
-
-
Mohallem, J.R.1
Oliveira, L.M.2
-
9
-
-
0032356130
-
Density functional theory of one-dimensional two-particle systems
-
H. L. Neal, "Density functional theory of one-dimensional two-particle systems," Am. J. Phys. 66, 512-516 (1998).
-
(1998)
Am. J. Phys.
, vol.66
, pp. 512-516
-
-
Neal, H.L.1
-
10
-
-
0032326350
-
Short-range repulsion and symmetry of two-body wave functions
-
J. Yang and V. Zelevinsky, "Short-range repulsion and symmetry of two-body wave functions," Am. J. Phys. 66, 247-251 (1998).
-
(1998)
Am. J. Phys.
, vol.66
, pp. 247-251
-
-
Yang, J.1
Zelevinsky, V.2
-
11
-
-
0004107553
-
-
Allyn and Bacon, Boston, MA, 2nd ed., and 207-210 for a synopsis
-
See I. N. Levine, Quantum Chemistry (Allyn and Bacon, Boston, MA, 1974), 2nd ed., pp. 193-194 and 207-210 for a synopsis.
-
(1974)
Quantum Chemistry
, pp. 193-194
-
-
Levine, I.N.1
-
12
-
-
0004027301
-
-
Academic, Orlando, FL, 3rd ed., 528-529, and 799-800 for properties of delta functions
-
See G. Arfken, Mathematical Methods for Physicists (Academic, Orlando, FL, 1985), 3rd ed., pp. 481-484, 528-529, and 799-800 for properties of delta functions.
-
(1985)
Mathematical Methods for Physicists
, pp. 481-484
-
-
Arfken, G.1
-
14
-
-
33744689102
-
-
note
-
Because of the finite-difference approximation of the kinetic energy operators, the variational principle which usually applies to Eq. (5) is not in force.
-
-
-
-
15
-
-
0001929076
-
Studies in Perturbation Theory. VII. Localized Perturbation
-
Per-Olov Löwdin, "Studies in Perturbation Theory. VII. Localized Perturbation," J. Mol. Spectrosc. 14, 119-130 (1964).
-
(1964)
J. Mol. Spectrosc.
, vol.14
, pp. 119-130
-
-
Löwdin, P.-O.1
-
16
-
-
0003806761
-
-
Wiley, New York
-
R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles (Wiley, New York, 1974), pp. 327-346.
-
(1974)
Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles
, pp. 327-346
-
-
Eisberg, R.1
Resnick, R.2
-
17
-
-
33744576721
-
-
2. It follows that for every S eigenfunction, an A eigenfunction can be constructed with the same eigenvalue, and vice versa
-
2. It follows that for every S eigenfunction, an A eigenfunction can be constructed with the same eigenvalue, and vice versa.
-
-
-
-
19
-
-
0000135303
-
Methods of conjugate gradients for solving linear systems
-
M. R. Hestenes and E. Stiefel, "Methods of conjugate gradients for solving linear systems," Natl. Bur. Stand. J. Res. 49, 409-436 (1952).
-
(1952)
Natl. Bur. Stand. J. Res.
, vol.49
, pp. 409-436
-
-
Hestenes, M.R.1
Stiefel, E.2
-
20
-
-
0004133516
-
-
Gaussian, Inc., Pittsburgh, PA 15213
-
M. J. Frisch, M. Head-Gordon, J. B. Foresman, G. W. Trucks, K. Raghavachari, H. B. Schlegel, M. Robb, J. S. Binkley, C. Gonzalez, D. J. Defrees, D. J. Fox, R. A. Whiteside. R. Seeger, C. F. Melius, J. Baker, L. R. Kahn, J. J. P. Stewart, E. M. Fluder, S. Topiol, and J. A. Pople, GAUSSIAN 90, Gaussian, Inc., Pittsburgh, PA 15213, 1990.
-
(1990)
GAUSSIAN 90
-
-
Frisch, M.J.1
Head-Gordon, M.2
Foresman, J.B.3
Trucks, G.W.4
Raghavachari, K.5
Schlegel, H.B.6
Robb, M.7
Binkley, J.S.8
Gonzalez, C.9
Defrees, D.J.10
Fox, D.J.11
Whiteside, R.A.12
Seeger, R.13
Melius, C.F.14
Baker, J.15
Kahn, L.R.16
Stewart, J.J.P.17
Fluder, E.M.18
Topiol, S.19
Pople, J.A.20
more..
-
21
-
-
33744674769
-
-
See Ref. 13, pp. 45-47
-
See Ref. 13, pp. 45-47.
-
-
-
-
23
-
-
33744608467
-
-
(3) = 4.934 940(802) a.u., with exact values of last digits shown in parentheses. Full diagonalization of a 300×300 matrix by a general routine should take less than 10 min on a small computer
-
(3) = 4.934 940(802) a.u., with exact values of last digits shown in parentheses. Full diagonalization of a 300×300 matrix by a general routine should take less than 10 min on a small computer.
-
-
-
|