메뉴 건너뛰기




Volumn 14, Issue 3, 2001, Pages 639-672

Central Limit Theorems for Level Functionals of Stationary Gaussian Processes and Fields

Author keywords

Asymptotic variance; Central limit theorem; Crossings; Gaussian fields; Gaussian processes; Hermite polynomials; Level curve; Maxima; Sojourn time

Indexed keywords


EID: 0035602481     PISSN: 08949840     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1017588905727     Document Type: Article
Times cited : (72)

References (20)
  • 2
    • 0000891819 scopus 로고
    • Limit theorems for non-linear functionals of a stationary Gaussian sequence of vectors
    • Arcones, M. (1994). Limit theorems for non-linear functionals of a stationary Gaussian sequence of vectors. Ann. Probab. 22, 2242-2274.
    • (1994) Ann. Probab. , vol.22 , pp. 2242-2274
    • Arcones, M.1
  • 3
    • 0041714848 scopus 로고
    • A Central Limit Theorem for the renormalized self-intersection local time of a stationary vector Gaussian process
    • Berman, S. (1992). A Central Limit Theorem for the renormalized self-intersection local time of a stationary vector Gaussian process. Ann. Probab. 20, 61-81.
    • (1992) Ann. Probab. , vol.20 , pp. 61-81
    • Berman, S.1
  • 4
    • 21144474394 scopus 로고
    • Approximation du temps local des surfaces gaussiennes
    • Berzin, C., et Wschebor, M. (1993). Approximation du temps local des surfaces gaussiennes. Probab. Theory Relat. Fields 96, 1-32.
    • (1993) Probab. Theory Relat. Fields , vol.96 , pp. 1-32
    • Berzin, C.1    Wschebor, M.2
  • 5
    • 0000323474 scopus 로고
    • Central limit theorems for non-linear functionals of Gaussian fields
    • Breuer, J., and Major, P. (1983). Central limit theorems for non-linear functionals of Gaussian fields. J. Mult. Anal. 13, 425-444.
    • (1983) J. Mult. Anal. , vol.13 , pp. 425-444
    • Breuer, J.1    Major, P.2
  • 7
    • 0000206847 scopus 로고
    • A central limit theorem for the number of zeros of a stochastic processes
    • Cuzick, J. (1976). A central limit theorem for the number of zeros of a stochastic processes. Ann. Probab. 4, 547-556.
    • (1976) Ann. Probab. , vol.4 , pp. 547-556
    • Cuzick, J.1
  • 9
    • 0010926067 scopus 로고
    • On the variance of the number of zeros of a stationay Gaussian process
    • Geman, D. (1972). On the variance of the number of zeros of a stationay Gaussian process. Ann. Math. Stat. 43, 977-982.
    • (1972) Ann. Math. Stat. , vol.43 , pp. 977-982
    • Geman, D.1
  • 10
    • 51249172022 scopus 로고
    • CLT and other limit theorems for functionals of Gaussian processes
    • Giraitis, L., and Surgailis, D. (1985). CLT and other limit theorems for functionals of Gaussian processes. Z. Wahrsch. Geb. 70, 191-212.
    • (1985) Z. Wahrsch. Geb. , vol.70 , pp. 191-212
    • Giraitis, L.1    Surgailis, D.2
  • 11
    • 0041714849 scopus 로고
    • On central and non-central limit theorems for non-linear functions of a stationary Gaussian Process
    • Oberwolfach
    • Ho, H. C., and Sun, T. C. (1985). On central and non-central limit theorems for non-linear functions of a stationary Gaussian Process. In Dependance in Probability and Statistics, Oberwolfach, pp. 3-19.
    • (1985) Dependance in Probability and Statistics , pp. 3-19
    • Ho, H.C.1    Sun, T.C.2
  • 12
    • 84876346090 scopus 로고
    • The Central Limit Theorem for dependent random variables
    • Hoeffding, W., and Roobins, H. (1948). The Central Limit Theorem for dependent random variables. Duke Math. J. 15, 773-780.
    • (1948) Duke Math. J. , vol.15 , pp. 773-780
    • Hoeffding, W.1    Roobins, H.2
  • 14
    • 0042716343 scopus 로고
    • Asymptotic behaviour of the integral of a function on the level set of a mixing random field
    • Iribarren, I. (1989). Asymptotic behaviour of the integral of a function on the level set of a mixing random field. Probab. Math. Statistics 10, No. 1, 45-56.
    • (1989) Probab. Math. Statistics , vol.10 , Issue.1 , pp. 45-56
    • Iribarren, I.1
  • 15
    • 0031588875 scopus 로고    scopus 로고
    • Hermite polynominal expansion for non-smooth functionals of stationary Gaussian processes: Crossings and extremes
    • Kratz, M., and León, J. (1997). Hermite polynominal expansion for non-smooth functionals of stationary Gaussian processes: Crossings and extremes. Stoch. Proc. Applic. 66, 237-252.
    • (1997) Stoch. Proc. Applic. , vol.66 , pp. 237-252
    • Kratz, M.1    León, J.2
  • 16
    • 0043217543 scopus 로고    scopus 로고
    • Central limit theorems for the number of maxima and some estimator of the second spectral moment of a stationary Gaussian process. Applications in hydroscience
    • Kratz, M., and León, J. (1998). Central limit theorems for the number of maxima and some estimator of the second spectral moment of a stationary Gaussian process. Applications in hydroscience, to appear in Extremes.
    • (1998) Extremes
    • Kratz, M.1    León, J.2
  • 17
    • 0012715577 scopus 로고
    • Asymptotic normality of the number of crossings of level 0 by a Gaussian process
    • Malevich, T. (1969). Asymptotic normality of the number of crossings of level 0 by a Gaussian process. Theory Probab. Applic. 14, 287-295.
    • (1969) Theory Probab. Applic. , vol.14 , pp. 287-295
    • Malevich, T.1
  • 18
    • 0010870199 scopus 로고
    • Multiple Wiener-Itô integral expansions for level-crossing-count functionals
    • Slud, E. (1991). Multiple Wiener-Itô integral expansions for level-crossing-count functionals. Prob. Th. Rel. Fields. 87, 349-364.
    • (1991) Prob. Th. Rel. Fields. , vol.87 , pp. 349-364
    • Slud, E.1
  • 19
    • 0000173021 scopus 로고
    • MWI representation of the number of curve-crossings by a differentiable Gaussian process, with applications
    • Slud, E. (1994). MWI representation of the number of curve-crossings by a differentiable Gaussian process, with applications. Ann. Probab. 22, 1355-1380.
    • (1994) Ann. Probab. , vol.22 , pp. 1355-1380
    • Slud, E.1
  • 20
    • 34250296747 scopus 로고
    • Law of the Iterated Logarithm for Sums of Non-Linear Functions of Gaussian Variables that Exhibit a Long Range Dependence
    • Taqqu, M. (1977). Law of the Iterated Logarithm for Sums of Non-Linear Functions of Gaussian Variables that Exhibit a Long Range Dependence. Z. Wahrsch. V. G. 40, 203-238.
    • (1977) Z. Wahrsch. V. G. , vol.40 , pp. 203-238
    • Taqqu, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.