-
2
-
-
0000891819
-
Limit theorems for non-linear functionals of a stationary Gaussian sequence of vectors
-
Arcones, M. (1994). Limit theorems for non-linear functionals of a stationary Gaussian sequence of vectors. Ann. Probab. 22, 2242-2274.
-
(1994)
Ann. Probab.
, vol.22
, pp. 2242-2274
-
-
Arcones, M.1
-
3
-
-
0041714848
-
A Central Limit Theorem for the renormalized self-intersection local time of a stationary vector Gaussian process
-
Berman, S. (1992). A Central Limit Theorem for the renormalized self-intersection local time of a stationary vector Gaussian process. Ann. Probab. 20, 61-81.
-
(1992)
Ann. Probab.
, vol.20
, pp. 61-81
-
-
Berman, S.1
-
4
-
-
21144474394
-
Approximation du temps local des surfaces gaussiennes
-
Berzin, C., et Wschebor, M. (1993). Approximation du temps local des surfaces gaussiennes. Probab. Theory Relat. Fields 96, 1-32.
-
(1993)
Probab. Theory Relat. Fields
, vol.96
, pp. 1-32
-
-
Berzin, C.1
Wschebor, M.2
-
5
-
-
0000323474
-
Central limit theorems for non-linear functionals of Gaussian fields
-
Breuer, J., and Major, P. (1983). Central limit theorems for non-linear functionals of Gaussian fields. J. Mult. Anal. 13, 425-444.
-
(1983)
J. Mult. Anal.
, vol.13
, pp. 425-444
-
-
Breuer, J.1
Major, P.2
-
7
-
-
0000206847
-
A central limit theorem for the number of zeros of a stochastic processes
-
Cuzick, J. (1976). A central limit theorem for the number of zeros of a stochastic processes. Ann. Probab. 4, 547-556.
-
(1976)
Ann. Probab.
, vol.4
, pp. 547-556
-
-
Cuzick, J.1
-
9
-
-
0010926067
-
On the variance of the number of zeros of a stationay Gaussian process
-
Geman, D. (1972). On the variance of the number of zeros of a stationay Gaussian process. Ann. Math. Stat. 43, 977-982.
-
(1972)
Ann. Math. Stat.
, vol.43
, pp. 977-982
-
-
Geman, D.1
-
10
-
-
51249172022
-
CLT and other limit theorems for functionals of Gaussian processes
-
Giraitis, L., and Surgailis, D. (1985). CLT and other limit theorems for functionals of Gaussian processes. Z. Wahrsch. Geb. 70, 191-212.
-
(1985)
Z. Wahrsch. Geb.
, vol.70
, pp. 191-212
-
-
Giraitis, L.1
Surgailis, D.2
-
11
-
-
0041714849
-
On central and non-central limit theorems for non-linear functions of a stationary Gaussian Process
-
Oberwolfach
-
Ho, H. C., and Sun, T. C. (1985). On central and non-central limit theorems for non-linear functions of a stationary Gaussian Process. In Dependance in Probability and Statistics, Oberwolfach, pp. 3-19.
-
(1985)
Dependance in Probability and Statistics
, pp. 3-19
-
-
Ho, H.C.1
Sun, T.C.2
-
12
-
-
84876346090
-
The Central Limit Theorem for dependent random variables
-
Hoeffding, W., and Roobins, H. (1948). The Central Limit Theorem for dependent random variables. Duke Math. J. 15, 773-780.
-
(1948)
Duke Math. J.
, vol.15
, pp. 773-780
-
-
Hoeffding, W.1
Roobins, H.2
-
14
-
-
0042716343
-
Asymptotic behaviour of the integral of a function on the level set of a mixing random field
-
Iribarren, I. (1989). Asymptotic behaviour of the integral of a function on the level set of a mixing random field. Probab. Math. Statistics 10, No. 1, 45-56.
-
(1989)
Probab. Math. Statistics
, vol.10
, Issue.1
, pp. 45-56
-
-
Iribarren, I.1
-
15
-
-
0031588875
-
Hermite polynominal expansion for non-smooth functionals of stationary Gaussian processes: Crossings and extremes
-
Kratz, M., and León, J. (1997). Hermite polynominal expansion for non-smooth functionals of stationary Gaussian processes: Crossings and extremes. Stoch. Proc. Applic. 66, 237-252.
-
(1997)
Stoch. Proc. Applic.
, vol.66
, pp. 237-252
-
-
Kratz, M.1
León, J.2
-
16
-
-
0043217543
-
Central limit theorems for the number of maxima and some estimator of the second spectral moment of a stationary Gaussian process. Applications in hydroscience
-
Kratz, M., and León, J. (1998). Central limit theorems for the number of maxima and some estimator of the second spectral moment of a stationary Gaussian process. Applications in hydroscience, to appear in Extremes.
-
(1998)
Extremes
-
-
Kratz, M.1
León, J.2
-
17
-
-
0012715577
-
Asymptotic normality of the number of crossings of level 0 by a Gaussian process
-
Malevich, T. (1969). Asymptotic normality of the number of crossings of level 0 by a Gaussian process. Theory Probab. Applic. 14, 287-295.
-
(1969)
Theory Probab. Applic.
, vol.14
, pp. 287-295
-
-
Malevich, T.1
-
18
-
-
0010870199
-
Multiple Wiener-Itô integral expansions for level-crossing-count functionals
-
Slud, E. (1991). Multiple Wiener-Itô integral expansions for level-crossing-count functionals. Prob. Th. Rel. Fields. 87, 349-364.
-
(1991)
Prob. Th. Rel. Fields.
, vol.87
, pp. 349-364
-
-
Slud, E.1
-
19
-
-
0000173021
-
MWI representation of the number of curve-crossings by a differentiable Gaussian process, with applications
-
Slud, E. (1994). MWI representation of the number of curve-crossings by a differentiable Gaussian process, with applications. Ann. Probab. 22, 1355-1380.
-
(1994)
Ann. Probab.
, vol.22
, pp. 1355-1380
-
-
Slud, E.1
-
20
-
-
34250296747
-
Law of the Iterated Logarithm for Sums of Non-Linear Functions of Gaussian Variables that Exhibit a Long Range Dependence
-
Taqqu, M. (1977). Law of the Iterated Logarithm for Sums of Non-Linear Functions of Gaussian Variables that Exhibit a Long Range Dependence. Z. Wahrsch. V. G. 40, 203-238.
-
(1977)
Z. Wahrsch. V. G.
, vol.40
, pp. 203-238
-
-
Taqqu, M.1
|