-
1
-
-
0002834813
-
A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains
-
Jonathan Arazy, A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains, Contemp. Math. 185 (1995), 7-65.
-
(1995)
Contemp. Math.
, vol.185
, pp. 7-65
-
-
Arazy, J.1
-
2
-
-
25444466910
-
Covariant Laplacean operators on Kähler manifolds
-
M. Englis and J. Peetre, Covariant Laplacean operators on Kähler manifolds, J. Reine Angew. Math. 478 (1996), 17-56.
-
(1996)
J. Reine Angew. Math.
, vol.478
, pp. 17-56
-
-
Englis, M.1
Peetre, J.2
-
3
-
-
0001768923
-
Function spaces and reproducing kernels on bounded symmetric domains
-
J. Faraut and A. Koranyi, Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal. 88 (1990), 64-89.
-
(1990)
J. Funct. Anal.
, vol.88
, pp. 64-89
-
-
Faraut, J.1
Koranyi, A.2
-
10
-
-
0000221732
-
Weyl quantization and tensor products of Fock and Bergman spaces
-
B. Ørsted and G. Zhang, Weyl quantization and tensor products of Fock and Bergman spaces, Indiana Univ. Math. J. 43 (1994), 551-582.
-
(1994)
Indiana Univ. Math. J.
, vol.43
, pp. 551-582
-
-
Ørsted, B.1
Zhang, G.2
-
11
-
-
0031371394
-
Tensor products of analytic continuations of holomorphic discrete series
-
B. Ørsted and G. Zhang, Tensor products of analytic continuations of holomorphic discrete series, Canadian J. Math. 49 (1997), 1224-1241.
-
(1997)
Canadian J. Math.
, vol.49
, pp. 1224-1241
-
-
Ørsted, B.1
Zhang, G.2
-
13
-
-
0006709779
-
Opèrateurs diffeérentiels de Shimura et espaces préhomogènes
-
H. Rubenthaler and G. Schiffmann, Opèrateurs diffeérentiels de Shimura et espaces préhomogènes, Invent. Math 90 (1987), no. 2, 409-442.
-
(1987)
Invent. Math
, vol.90
, Issue.2
, pp. 409-442
-
-
Rubenthaler, H.1
Schiffmann, G.2
-
14
-
-
0002851961
-
Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen
-
W. Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math 9 (1969), 61-80.
-
(1969)
Invent. Math
, vol.9
, pp. 61-80
-
-
Schmid, W.1
-
15
-
-
43949148657
-
The Plancherel formula for spherical functions with one-dimensional K-Type on a simply connected simple Lie group of hermitian type
-
N. Shimeno, The Plancherel formula for spherical functions with one-dimensional K-Type on a simply connected simple Lie group of hermitian type, J. Funct. Anal. 121 (1994), 331-388.
-
(1994)
J. Funct. Anal.
, vol.121
, pp. 331-388
-
-
Shimeno, N.1
-
16
-
-
84972567615
-
Arithmetic of differential operators on symmetric domains
-
G. Shimura, Arithmetic of differential operators on symmetric domains, Duke Math. J. 48 (1981), no. 4, 813-846.
-
(1981)
Duke Math. J.
, vol.48
, Issue.4
, pp. 813-846
-
-
Shimura, G.1
-
17
-
-
84972581480
-
Differential operators and the singular values of Eisenstein series
-
G. Shimura, Differential operators and the singular values of Eisenstein series, Duke Math. J. 51 (1984), no. 2, 261-329.
-
(1984)
Duke Math. J.
, vol.51
, Issue.2
, pp. 261-329
-
-
Shimura, G.1
-
18
-
-
0002938589
-
On differential operators attached to certain representations of classical groups
-
G. Shimura, On differential operators attached to certain representations of classical groups, Invent. Math. 77 (1984), 463-488.
-
(1984)
Invent. Math.
, vol.77
, pp. 463-488
-
-
Shimura, G.1
-
19
-
-
0037506182
-
On a class of nearly holomorphic automorphic forms
-
G. Shimura, On a class of nearly holomorphic automorphic forms, Ann. Math. 123 (1986), no. 2, 347-406.
-
(1986)
Ann. Math.
, vol.123
, Issue.2
, pp. 347-406
-
-
Shimura, G.1
-
20
-
-
0002116721
-
Nearly holomorphic functions on hermitian symmetric spaces
-
G. Shimura, Nearly holomorphic functions on hermitian symmetric spaces, Math. Ann. 278 (1987), 1-28.
-
(1987)
Math. Ann.
, vol.278
, pp. 1-28
-
-
Shimura, G.1
-
21
-
-
0013528107
-
Invariant differential operators on Hermitian symmetric spaces
-
G. Shimura, Invariant differential operators on Hermitian symmetric spaces, Ann. Math. 132 (1990), 232-272.
-
(1990)
Ann. Math.
, vol.132
, pp. 232-272
-
-
Shimura, G.1
-
22
-
-
84973998189
-
Differential operators, holomorphic projection, and singular forms
-
G. Shimura, Differential operators, holomorphic projection, and singular forms, Duke. Math. J. 76 (1994), no. 1, 141-173.
-
(1994)
Duke. Math. J.
, vol.76
, Issue.1
, pp. 141-173
-
-
Shimura, G.1
-
24
-
-
21844523831
-
The Berezin transform and invariant differential operators
-
A. Unterberger and H. Upmeier, The Berezin transform and invariant differential operators, Comm. Math. Phys. 164 (1994), 563-597.
-
(1994)
Comm. Math. Phys.
, vol.164
, pp. 563-597
-
-
Unterberger, A.1
Upmeier, H.2
-
25
-
-
0011966787
-
Polynomial differential operators associated with hermitian symmetric spaces
-
Representation Theory of Lie Groups and Lie Algebras, (S. Sano. T. Kawazoe, T. Oshima, ed.), World Scientific Singapore
-
N. Wallach, Polynomial differential operators associated with hermitian symmetric spaces, Representation Theory of Lie Groups and Lie Algebras, Proceedings of Fuji-Kawaguchiko Conference 1990 (S. Sano. T. Kawazoe, T. Oshima, ed.), World Scientific Singapore, 1992, pp. 76-95.
-
(1990)
Proceedings of Fuji-Kawaguchiko Conference
, pp. 76-95
-
-
Wallach, N.1
-
26
-
-
0000290463
-
Compact Lie groups and their representations
-
Amer. Math. Soc., Providence, Rhode Island
-
D. P. Zelobenko, Compact Lie groups and their representations, Transl. Math. Monographs, Amer. Math. Soc., Providence, Rhode Island, 1973.
-
(1973)
Transl. Math. Monographs
-
-
Zelobenko, D.P.1
-
27
-
-
0011000033
-
Berezin transform on line bundles over hermitian symmetric spaces
-
to appear
-
G. Zhang, Berezin transform on line bundles over hermitian symmetric spaces, J. Lie Theory, to appear.
-
J. Lie Theory
-
-
Zhang, G.1
-
28
-
-
0000696481
-
Some recurrence formulas of spherical polynomials on tube domains
-
G. Zhang, Some recurrence formulas of spherical polynomials on tube domains, Trans. Amer. Math. Soc. 347 (1995), 1725-1734.
-
(1995)
Trans. Amer. Math. Soc.
, vol.347
, pp. 1725-1734
-
-
Zhang, G.1
-
29
-
-
19644362319
-
Invariant differential operators on hermitian symmetric spaces and their eigenvalues
-
to appear.
-
G. Zhang, Invariant differential operators on hermitian symmetric spaces and their eigenvalues, Israel J. Math., to appear.
-
Israel J. Math.
-
-
Zhang, G.1
|