메뉴 건너뛰기




Volumn 2, Issue 5, 2001, Pages 807-856

On Birkhoff coordinates for KdV

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0035540786     PISSN: 14240637     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00023-001-8595-0     Document Type: Article
Times cited : (16)

References (17)
  • 1
    • 84874962985 scopus 로고
    • Convexity and commuting Hamiltonians
    • M. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), 1-15.
    • (1982) Bull. London Math. Soc. , vol.14 , pp. 1-15
    • Atiyah, M.1
  • 2
    • 84974003856 scopus 로고
    • On the symplectic structure of the phase space for periodic KdV, Toda and defocusing NLS
    • D. Bättig, A. Bloch, J.-C. Guillot, and T. Kappeler, On the symplectic structure of the phase space for periodic KdV, Toda and defocusing NLS, Duke Math. J. 79 (1995), 549-604.
    • (1995) Duke Math. J. , vol.79 , pp. 549-604
    • Bättig, D.1    Bloch, A.2    Guillot, J.-C.3    Kappeler, T.4
  • 3
    • 16144366994 scopus 로고    scopus 로고
    • On the Korteweg-deVries equation: Convergent Birkhoff normal form
    • D. Bättig, T. Kappeler, and B. Mityagin, On the Korteweg-deVries equation: convergent Birkhoff normal form, J. Funct. Anal. 140 (1996), 335-358.
    • (1996) J. Funct. Anal. , vol.140 , pp. 335-358
    • Bättig, D.1    Kappeler, T.2    Mityagin, B.3
  • 4
    • 0001778712 scopus 로고    scopus 로고
    • On the Korteweg-deVries equation: Frequencies and initial value problem
    • D. Bättig, T. Kappeler, and B. Mityagin, On the Korteweg-deVries equation: frequencies and initial value problem, Pacific J. Math. 181 (1997), 1-55.
    • (1997) Pacific J. Math. , vol.181 , pp. 1-55
    • Bättig, D.1    Kappeler, T.2    Mityagin, B.3
  • 5
    • 0001037331 scopus 로고
    • Canonically conjugate variables for the Korteweg-deVries equation and Toda lattice with periodic boundary conditions
    • H. Flaschka and D. McLaughlin, Canonically conjugate variables for the Korteweg-deVries equation and Toda lattice with periodic boundary conditions, Progress of Theor. Phys. 55 (1976), 438-456.
    • (1976) Progress of Theor. Phys. , vol.55 , pp. 438-456
    • Flaschka, H.1    McLaughlin, D.2
  • 6
    • 51249182844 scopus 로고
    • Gaps and bands of one dimensional Schrödinger operators
    • J. Garnett, E. Trubowitz, Gaps and bands of one dimensional Schrödinger operators, Comm. Math. Helv. 59 (1934), 258-312.
    • (1934) Comm. Math. Helv. , vol.59 , pp. 258-312
    • Garnett, J.1    Trubowitz, E.2
  • 7
    • 0003301335 scopus 로고
    • Introduction to the theory of linear, non-selfadjoint operators
    • AMS
    • I.C. Gohberg and M.G. Krein, Introduction to the theory of linear, non-selfadjoint operators, Transl. of Math Monogr., Volume 18, AMS, 1969.
    • (1969) Transl. of Math Monogr. , vol.18
    • Gohberg, I.C.1    Krein, M.G.2
  • 8
    • 0000567544 scopus 로고
    • Convexity properties of the moment mapping
    • V. Guillemin, S. Sternberg, Convexity properties of the moment mapping, Invent. Math. 67 (1982), 491-515.
    • (1982) Invent. Math. , vol.67 , pp. 491-515
    • Guillemin, V.1    Sternberg, S.2
  • 9
    • 0000928116 scopus 로고
    • Fibration of the phase-space for the Korteweg-deVries equation
    • T. Kappeler, Fibration of the phase-space for the Korteweg-deVries equation, Ann. Inst. Fourier 41 (1991), 539-575.
    • (1991) Ann. Inst. Fourier , vol.41 , pp. 539-575
    • Kappeler, T.1
  • 10
    • 0034343129 scopus 로고    scopus 로고
    • On action-angle variables for the second Poisson bracket of KdV
    • T. Kappeler, M. Makarov, On action-angle variables for the second Poisson bracket of KdV, Commun. Math. Phys. 214 (2000), 651-677.
    • (2000) Commun. Math. Phys. , vol.214 , pp. 651-677
    • Kappeler, T.1    Makarov, M.2
  • 11
    • 0035527618 scopus 로고    scopus 로고
    • Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator
    • T. Kappeler, B. Mityagin, Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator, to appear in SIAM J. of Math. Anal.
    • SIAM J. of Math. Anal.
    • Kappeler, T.1    Mityagin, B.2
  • 13
    • 84980167496 scopus 로고
    • Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points
    • H.P. McKean, E. Trubowitz, Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points, CPAM 24 (1976), 143-226.
    • (1976) CPAM , vol.24 , pp. 143-226
    • McKean, H.P.1    Trubowitz, E.2
  • 14
    • 0000581658 scopus 로고
    • Hill's surfaces and their theta functions
    • H.P. McKean, E. Trubowitz, Hill's surfaces and their theta functions, Bull AMS 84 (1978), 1042-1085.
    • (1978) Bull AMS , vol.84 , pp. 1042-1085
    • McKean, H.P.1    Trubowitz, E.2
  • 15
    • 0040758102 scopus 로고    scopus 로고
    • Action-angle variables for the cubic Schrödinger equation
    • H.P. McKean, K.L. Vaninsky, Action-angle variables for the cubic Schrödinger equation, CPAM 50 (1997), 489-562.
    • (1997) CPAM , vol.50 , pp. 489-562
    • McKean, H.P.1    Vaninsky, K.L.2
  • 17
    • 0001802859 scopus 로고    scopus 로고
    • Spectral properties of non-selfadjoint Hill's operators with smooth potentials
    • A. Boutet de Monvel and V. Marchenko (eds.), Kluwer
    • J.J. Sansuc, V. Tkachenko, Spectral properties of non-selfadjoint Hill's operators with smooth potentials, in A. Boutet de Monvel and V. Marchenko (eds.), Algebraic and geometric methods in mathematical physics, 371-385, Kluwer, 1996.
    • (1996) Algebraic and Geometric Methods in Mathematical Physics , pp. 371-385
    • Sansuc, J.J.1    Tkachenko, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.