메뉴 건너뛰기




Volumn 223, Issue 2, 2001, Pages 383-408

Differential geometry from differential equations

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0035540556     PISSN: 00103616     EISSN: None     Source Type: Journal    
DOI: 10.1007/s002200100548     Document Type: Article
Times cited : (43)

References (15)
  • 1
    • 0001383307 scopus 로고
    • Les Espaces Generalises e L'integration de Certaines Classes d'Equations Differentielles
    • 1. Cartan, E.: Les Espaces Generalises e L'integration de Certaines Classes d'Equations Differentielles. C. R. Acad. Sci. 206, 1425-1429 (1938).
    • (1938) C. R. Acad. Sci. , vol.206 , pp. 1425-1429
    • Cartan, E.1
  • 2
    • 0002795976 scopus 로고
    • La Geometria de las Ecuaciones Diferenciales de Tercer Orden
    • 2. Cartan, E.: La Geometria de las Ecuaciones Diferenciales de Tercer Orden. Rev. Mat. Hispano-Amer. 4, 1-31 (1941)
    • (1941) Rev. Mat. Hispano-Amer. , vol.4 , pp. 1-31
    • Cartan, E.1
  • 4
    • 4644287195 scopus 로고
    • The geometry of the differential equation y‴ = F(x, y, y′, y″)
    • Berlin-Heidelberg-New York; Springer-Verlag, (original 1940)
    • 4. Chern, S.-S.: The Geometry of the Differential Equation y‴ = F(x, y, y′, y″). In Selected Papers. Berlin-Heidelberg-New York; Springer-Verlag, 1978 (original 1940)
    • (1978) Selected Papers
    • Chern, S.-S.1
  • 5
    • 0004304381 scopus 로고    scopus 로고
    • Über Berührungsbedingungen bei Integralkurven von Differentialgleichungen
    • Leipzig: Teubner
    • 5. Wunschmann, K.: Über Berührungsbedingungen bei Integralkurven von Differentialgleichungen. Inaug. Dissert., Leipzig: Teubner
    • Inaug. Dissert.
    • Wunschmann, K.1
  • 6
    • 0034336595 scopus 로고    scopus 로고
    • Einstein-Weyl spaces and third order differential equations
    • 6. Tod, K.P.: Einstein-Weyl Spaces and Third Order Differential Equations, J. Math. Phys. 41, 5572 (2000)
    • (2000) J. Math. Phys. , vol.41 , pp. 5572
    • Tod, K.P.1
  • 8
    • 0007110138 scopus 로고    scopus 로고
    • note
    • 8. Though there is a simple heuristic argument for the four-dimensionality of the solution space, recently, in a private communication, Peter Vassiliou and Niky Kamran have given a rigorous proof of this.
  • 10
    • 33750568254 scopus 로고
    • Lorentzian metrics from characteristic surfaces
    • 10. Frittelli, S., Kozameh, C., Newman, E.: Lorentzian Metrics from Characteristic Surfaces. J. Math. Phys. 36, 4975 (1995)
    • (1995) J. Math. Phys. , vol.36 , pp. 4975
    • Frittelli, S.1    Kozameh, C.2    Newman, E.3
  • 11
    • 0000080296 scopus 로고    scopus 로고
    • Dynamics of light cone cuts of null infinity
    • 11. Frittelli, S., Kozameh, C., Newman, E.: Dynamics of Light cone Cuts of Null Infinity. Phys. Rev. D 56, 4729 (1997)
    • (1997) Phys. Rev. D , vol.56 , pp. 4729
    • Frittelli, S.1    Kozameh, C.2    Newman, E.3
  • 12
    • 33750548272 scopus 로고
    • Linearized Einstein theory via null surfaces
    • 12. Frittelli, S., Kozameh, C., Newman, E.: Linearized Einstein Theory Via Null Surfaces. J. Math. Phys. 36, 5005 (1995)
    • (1995) J. Math. Phys. , vol.36 , pp. 5005
    • Frittelli, S.1    Kozameh, C.2    Newman, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.